idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
04/23/2021 11:00

Genauere Messungen durch Quantensteuerung

Reto Caluori Kommunikation & Marketing
Universität Basel

    Mit Quantensystemen, die aus mehreren Teilchen bestehen, können magnetische oder elektrische Felder genauer gemessen werden. Ein junger Physiker der Universität Basel hat nun ein neues Verfahren für solche Messungen vorgeschlagen, das auf einer bestimmten Art von Korrelationen zwischen Quantenteilchen beruht.

    In der Quanteninformatik bedient man sich oft der fiktiven Agenten Alice und Bob, um komplexe Kommunikationsaufgaben anschaulich zu machen. So kann Alice etwa verschränkte Quantenteilchen wie zum Beispiel Photonen benutzen, um damit einen – ihr selbst unbekannten – Quantenzustand an Bob zu übertragen, also zu «teleportieren», was mit traditioneller Kommunikation nicht machbar ist.

    Bislang war indes nicht klar, ob das Gespann Alice-Bob ähnliche Quantenzustände auch für andere Dinge ausser der Kommunikation verwenden kann. Ein junger Physiker der Universität Basel hat nun gezeigt, wie mit bestimmten Arten von Quantenzuständen Messungen mit einer höheren Präzision gemacht werden können, als die Quantenmechanik normalerweise erlaubt. Die Ergebnisse wurden im Fachjournal «Nature Communications» veröffentlicht.

    Quantensteuerung auf Entfernung

    Gemeinsam mit Forschern in Grossbritannien und Frankreich hat sich Dr. Matteo Fadel vom Departement Physik der Universität Basel überlegt, wie man hochgenaue Messaufgaben mithilfe der sogenannten Quantensteuerung («quantum steering») angehen kann.

    Die Quantensteuerung beschreibt die Tatsache, dass in bestimmten Quantenzuständen von zwei Teilchen eine Messung am ersten Teilchen es erlaubt, genauere Vorhersagen über mögliche Messergebnisse am zweiten Teilchen zu machen, als es die Quantenmechanik bei einer einzigen Messung nur am zweiten Teilchen zulassen würde. Das ist dann gerade so, als hätte die Messung am ersten Teilchen den Zustand des zweiten «gesteuert».

    Dieses Phänomen ist auch als EPR-Paradox bekannt, benannt nach Albert Einstein, Boris Podolsky und Nathan Rosen, die es 1935 erstmals beschrieben haben. Bemerkenswert an dieser Steuerung ist, dass sie auch funktioniert, wenn die Teilchen sich weit voneinander entfernt aufhalten, da sie quantenmechanisch verschränkt sind und einander auf Distanz spüren. Dies erlaubt es Alice auch, ihren Quantenzustand durch Quantenteleportation an Bob zu senden.

    «Für die Quantensteuerung müssen die Teilchen auf ganz bestimmte Weise miteinander verschränkt sein», erklärt Fadel. «Wir wollten nun verstehen, ob man das auch ausnutzen kann, um damit bessere Messungen zu machen». Die Messprozedur, die er vorschlägt, besteht darin, dass Alice eine Messung an ihrem Teilchen macht und das Ergebnis an Bob übermittelt.

    Dieser kann daraufhin dank der Quantensteuerung zwischen den Teilchen seine Messapparatur so justieren, dass der Messfehler an seinem Teilchen geringer ist, als er es ohne Alices Information gewesen wäre. Auf diese Weise kann Bob etwa magnetische oder elektrische Felder, die auf sein Teilchen wirken, mit hoher Präzision messen.

    Systematische Untersuchung von Messungen mit Quantensteuerung

    Die Arbeit von Fadel und seinen Kollegen erlaubt es nun, die Nützlichkeit der Quantensteuerung für metrologische Anwendungen systematisch zu untersuchen und zu demonstrieren. «Die Idee dazu entstand aus einem Experiment, das wir bereits 2018 im Labor von Professor Philipp Treutlein an der Universität Basel gemacht haben», sagt Fadel. «Damals konnten wir erstmalig die Quantensteuerung zwischen zwei Wolken aus hunderten von kalten Atomen messen. Anschliessend fragten wir uns, ob man damit vielleicht etwas Nützliches machen könnte.» Mit seiner Arbeit hat Fadel nun ein mathematisch festes Fundament für die Umsetzung von realistischen Messanwendungen geschaffen, die Quantensteuerung als Ressource verwenden.

    «In manchen einfachen Fällen kannte man zwar schon eine Verbindung zwischen dem EPR-Paradox und Präzisionsmessungen», meint Prof. Philipp Treutlein, «doch nun haben wir einen allgemeinen theoretischen Rahmen, innerhalb dessen wir auch neue Strategien für die Quantenmetrologie entwickeln können.» Einige Forscher arbeiten bereits daran, Fadels Ideen im Experiment zu demonstrieren. In Zukunft könnte dies zu neuen quantenverstärkten Messgeräten führen.


    Contact for scientific information:

    Dr. Matteo Fadel, Universität Basel, Departement Physik, Tel. +41 61 207 37 14, E-Mail: matteo.fadel@unibas.ch


    Original publication:

    Benjamin Yadin, Matteo Fadel, and Manuel Gessner
    Metrological complementarity reveals the Einstein-Podolsky-Rosen paradox
    Nature Communications (2021), doi: 10.1038/s41467-021-22353-3
    https://doi.org/10.1038/s41467-021-22353-3


    Images

    Criteria of this press release:
    Journalists, Scientists and scholars
    Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).