idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
04/22/2021 14:57

Mit Nanopartikeln gegen gefährliche Bakterien

Rainer Klose Kommunikation
Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

    Multiresistente Krankheitserreger sind ein gravierendes und zunehmendes Problem in der modernen Medizin. Wo Antibiotika wirkungslos bleiben, können diese Bakterien lebensgefährliche Infektionen verursachen. Forschende der Empa und der ETH Zürich haben nun neuartige Nanopartikel entwickelt, mit denen sich multiresistente Erreger aufspüren und abtöten lassen, die sich in Körperzellen verstecken, wie sie in einer aktuellen Studie im Fachmagazin «Nanoscale» schreiben.

    Beim Wettrüsten «Menschheit gegen Bakterien» haben die Bakterien momentan die Nase vorn. Unsere einstigen Wunderwaffen, die Antibiotika, versagen immer häufiger bei Keimen, die trickreiche Manöver einsetzen, um sich vor der Wirkung der Medikamente zu schützen. Einige Arten ziehen sich sogar ins Innere menschlicher Körperzellen zurück, wo sie dann vom Immunsystem unbehelligt bleiben. Zu diesen besonders gefürchteten Erregern gehören auch sogenannte multiresistente Staphylokokken (MRSA), die lebensgefährliche Krankheiten wie Blutvergiftungen oder Lungenentzündungen hervorrufen können.
    Um die Keime in ihrem Versteck aufzuspüren und unschädlich zu machen, hat ein Team von Forschenden der Empa und der ETH Zürich nun Nanopartikel entwickelt, die einen völlig anderen Wirkmechanismus als herkömmliche Antibiotika nutzen: Während Antibiotika schlecht in Körperzellen eindringen können, gelingt es diesen Nanopartikeln aufgrund ihrer geringen Grösse und Beschaffenheit, sich ins Innere der befallenen Zelle einschleusen zu lassen. Einmal dort angekommen, bekämpfen sie die Bakterien.

    Bioglas und Metall

    Das Team um Inge Herrmann und Tino Matter hat hierzu das Material Ceroxid eingesetzt, das in seiner Nanopartikel-Form antibakteriell und entzündungshemmend wirkt. Die Nanopartikel kombinierten die Forschenden mit einem bioaktiven Keramikwerkstoff, sogenanntem Bioglas. Interessant ist Bioglas für die Medizin, da es vielseitige regenerative Eigenschaften hat und beispielsweise für den Wiederaufbau von Knochen und Weichteilen eingesetzt wird.
    Mittels Flammensynthese wurden schliesslich Nanopartikel-Hybride aus Ceroxid und Bioglas hergestellt. Die Partikel konnten bereits erfolgreich als Wundkleber (https://www.empa.ch/de/web/s604/empa-innovation-award-2020) eingesetzt werden, wobei gleich mehrere interessante Eigenschaften simultan genutzt werden können: Dank der Nanopartikel können Blutungen gestoppt, Entzündungen gedämpft und die Wundheilung beschleunigt werden. Zudem zeigen die neuartigen Partikel eine signifikante Wirkung gegen Bakterien, während die Behandlung für menschliche Zellen gut verträglich ist. Erst kürzlich konnte die neue Technologie erfolgreich patentiert werden. Ihre Ergebnisse publizierte das Team jetzt im Fachmagazin «Nanoscale» in der «Emerging Investigator Collection 2021».

    Bakterien zerstören

    Die Wechselwirkungen zwischen den Hybrid-Nanopoartikeln, den Körperzellen und den Keimen konnten die Forschenden unter anderem anhand von Elektronenmikroskopie-Untersuchungen aufzeigen. Wurden infizierte Zellen mit den Nanopartikeln behandelt, begannen sich die Bakterien im Inneren der Zellen aufzulösen. Wurde die Aufnahme der Hybrid-Partikel hingegen von den Forschenden gezielt blockiert, stoppte auch der antibakterielle Effekt.
    Der genaue Wirkmechanismus der Cerium-haltigen Partikel ist derzeit noch nicht vollständig geklärt. Erwiesen ist, dass auch andere Metalle antimikrobielle Effekte aufweisen. Cerium ist allerdings weniger giftig für Körperzellen als beispielsweise Silber. Die Forschenden nehmen derzeit an, dass die Nanopartikel auf die Zellmembran der Bakterien einwirken, wobei reaktive Sauerstoffverbindungen entstehen, die zur Zerstörung der Keime führen. Da die Membran von menschlichen Zellen anders aufgebaut ist, bleiben Körperzellen von diesem Vorgang verschont.
    Gegen einen derartigen Mechanismus, so meinen die Forscher, würden sich vermutlich weniger Re-sistenzen entwickeln können. «Zudem regenerieren sich die Ceroxid-Partikel mit der Zeit wieder, so dass der oxidative Effekt der Nanopartikel auf die Bakterien erneut einsetzt», sagt Empa-Forscher Tino Matter». So könnten die Cerium-Partikel eine nachhaltige Wirkung erzielen.
    Als nächstes wollen die Forschenden die Interaktionen der Partikel im Infektionsgeschehen genauer analysieren, um die Struktur und Zusammensetzung der Nanowirkstoffe weiter zu optimieren. Das Ziel ist, ein einfaches, robustes antibakterielles Mittel, zu entwickeln, das im Inneren infizierter Zellen wirksam ist.
    --------------------------------------------------------
    Bakterien: Trickreiche Keime

    Unter den Bakterien gibt es einige besonders trickreiche Krankheitserreger, die in Körperzellen eindringen und dort für das Immunsystem unsichtbar sind. So überdauern sie Zeiten, in denen die Körperabwehr in Alarmbereitschaft ist. Auch für Staphylokokken ist dieses Phänomen bekannt. Sie können sich in Zellen der Haut, des Bindegewebes, der Knochen und des Immunsystems zurückziehen. Der Mechanismus dieser Persistenz ist noch nicht völlig geklärt.
    Staphylokokken sind meist harmlose Keime, die auf der Haut und auf Schleimhäuten vorkommen können. Unter bestimmten Bedingungen aber fluten die Bakterien den Körper und lösen schwere Entzündungen aus bis hin zu einem toxischen Schock oder einer Blutvergiftung. Dadurch sind Staphylokokken die Haupttodesursache durch Infektionen mit nur einem einzigen Erregertypen.
    Besonders prekär ist die zunehmende Zahl an Staphylokokken-Infektionen, die nicht mehr auf eine Behandlung mit Antibiotika ansprechen. MRSA, multiresistente Keime, sind vor allem in Spitälern gefürchtet, wo sie als nosokomiale Erreger schlecht behandelbare Wundinfektionen hervorrufen oder Katheter und Geräte besiedeln. Insgesamt kommt es in der Schweiz jedes Jahr zu rund 75'000 Spitalinfektionen, 12'000 davon verlaufen tödlich.


    Contact for scientific information:

    Tino Matter
    Particles-Biology Interactions (Empa)
    Tel. +41 58 765 72 33
    Tino.Matter@empa.ch

    Prof. Dr. Inge Herrmann
    Particles-Biology Interactions (Empa) und
    Nanoparticle Systems Engineering Laboratory (ETH Zürich)
    Tel. +41 58 765 74 99
    inge.herrmann@empa.ch /
    ingeh@ethz.ch

    Redaktion / Medienkontakt
    Dr. Andrea Six
    Communications
    Phone +41 58 765 61 33
    andrea.six@empa.ch


    Original publication:

    MT Matter, M Doppegieter, A Gogos, Q Ren, K Keevend, IK Herrmann; Inorganic nanohybrids combat antibiotic-resistant bacteria hiding within human macrophages; Nanoscale (2021); https://doi.org/10.1039/D0NR08285F


    More information:

    https://www.empa.ch/web/s604/nanoparticle-therapy


    Images

    Wo herkömmliche Medikamente versagen: Antibiotika-resistente Bakterien. Kolorierte elektronenmikroskopische Aufnahme.
    Wo herkömmliche Medikamente versagen: Antibiotika-resistente Bakterien. Kolorierte elektronenmikrosk ...

    CDC/NIAID

    Tödlicher Kontakt: Forschende der Empa und der ETH Zürich haben Nanopartikel (rot) entwickelt, die resistente Bakterien (gelb) abtöten können.
    Tödlicher Kontakt: Forschende der Empa und der ETH Zürich haben Nanopartikel (rot) entwickelt, die r ...

    Empa


    Criteria of this press release:
    Journalists
    Materials sciences, Medicine, Nutrition / healthcare / nursing
    transregional, national
    Research results
    German


     

    Wo herkömmliche Medikamente versagen: Antibiotika-resistente Bakterien. Kolorierte elektronenmikroskopische Aufnahme.


    For download

    x

    Tödlicher Kontakt: Forschende der Empa und der ETH Zürich haben Nanopartikel (rot) entwickelt, die resistente Bakterien (gelb) abtöten können.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).