idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
04/23/2021 10:00

AWAKE brings proton bunches into sync

Barbara Wankerl Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Physik

    The future of particle acceleration has begun. AWAKE is a promising concept for a completely new method with which particles can be accelerated even over short distances. The basis for this is a plasma wave that accelerates electrons and thus brings them to high energies. A team led by the Max Planck Institute for Physics (MPP) reports a breakthrough in Physical Review Letters. For the first time, they were able to precisely time the production of the proton microbunches that drive the wave in the plasma. This fulfills an important prerequisite for using the AWAKE technology for collision experiments.

    How do you create a wave for electrons? The carrier substance for this is a plasma (i.e., an ionized gas in which positive and negative charges are separated). Directing a proton beam through the plasma creates a wave on which electrons ride and are accelerated to high energies.

    The proton source of AWAKE is the SPS ring at CERN, a pre-accelerator for the 27-kilometer circumference ring of the Large Hadron Collider (LHC). It produces proton bunches about 10-cm long. “However, in order to generate a large amplitude plasma wave, the proton bunch length must be much shorter – in the millimeter range,” explains MPP PhD student Fabian Batsch.

    The scientists take advantage of self-modulation, a “natural” interaction between the bunch and plasma. “In the process, the longer proton bunch is split into high-energy proton microbunches of only a few millimeters in length, building the train beam,” says Batsch. “This process forms a plasma wave, which propagates with the train travelling through the plasma field.”

    Precise timing allows ideal electron acceleration

    However, a stable and reproducible field is required to accelerate electrons and bring them to collision. This is exactly what the MPP-led team has found a solution for. “If a sufficiently large electric field is applied when the long proton bunch is injected and the self-modulation is thus immediately set in motion.”

    “Since the plasma is formed right away, we can exactly time the phase of the short proton microbunches,” says Patric Muggli, head of the AWAKE working group at the MPP. “This allows us to set the pace for the train. Thus, the electrons are caught and accelerated by the wave at the ideal moment.”

    First research projects in sight

    The AWAKE technology is still in the early stages of development. However, with each step toward success, the chances of this accelerator technology actually being used in the coming decades increase. The first proposals for smaller accelerator projects (e.g., for example to study the fine structure of protons) are to be made as early as 2024.

    According to Muggli, the advantages of the novel accelerator technology – plasma wakefield acceleration – are obvious: “With this technology, we can reduce the distance needed to accelerate electrons to peak energy by a factor of 20. The accelerators of the future could therefore be much smaller. This means: Less space, less effort, and therefore lower costs.”


    Contact for scientific information:

    Dr. Patric Muggli
    muggli@mpp.mpg.de
    +49 89 32354-580

    Fabian Batsch
    fbatsch@mpp.mpg.de
    +41 754111241


    Original publication:

    Transition between instability and seeded self-modulation of a relativistic particle bunch in plasma
    F. Batsch et al.
    Physical Review Letters, 23 Apr 2021 (Vol. 126, No. 16)
    DOI: 10.1103/PhysRevLett.126.164802


    Images

    Proton bunches in sync: A train of short proton bunches travels through the plasma field, forming a wave on which electrons can be accelerated.
    Proton bunches in sync: A train of short proton bunches travels through the plasma field, forming a ...
    AWAKE
    AWAKE

    Setup of the AWAKE experiment at the CERN research center
    Setup of the AWAKE experiment at the CERN research center
    Maximilien Brice
    CERN


    Criteria of this press release:
    Journalists, Scientists and scholars
    Physics / astronomy
    transregional, national
    Research projects
    English


     

    Proton bunches in sync: A train of short proton bunches travels through the plasma field, forming a wave on which electrons can be accelerated.


    For download

    x

    Setup of the AWAKE experiment at the CERN research center


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).