idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
05/31/2021 17:47

Quantum Hall effect and the third dimension

Dipl.-Übers. Ingrid Rothe Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Chemische Physik fester Stoffe

    The quasi-quantized Hall effect is a three-dimensional relative of the Quantum Hall effect in two-dimensional systems.

    The quantum Hall effect traditionally only plays a role in two-dimensional electron systems. Recently, however, a three-dimensional version of the quantum Hall effect was described in the Dirac semimetal ZrTe5. It has been suggested that this version results from a magnetic field-induced Fermi surface instability that transforms the original three-dimensional electron system into a stack of two-dimensional electron systems. Now scientists at the Max Planck Institute for Chemical Physics of Solids in Dresden, at the Technical University of Dresden, at the Brookhaven National Laboratory in New York, at the Helmholtz Center Dresden-Rossendorf, the Max Planck Institute for Microstructure Physics in Halle and at the Würzburg-Dresden Cluster of Excellence ct.qmat were able to show that the electron system of ZrTe5, contrary to the original explanation, remains three-dimensional even in strong magnetic fields and that the quasi-quantization of the Hall effect is nevertheless directly linked to quantum-Hall physics.

    The findings from the study of quantum Hall physics in the third dimension can be universally applied to conventional metals and promise a unified explanation of the plateaus that have been observed in Hall measurements in many three-dimensional materials, which were often puzzling in the past. In addition, the concept can be directly applied to generalize the two-dimensional quantum anomalous Hall effect to generic three-dimensional magnets.

    Figure: Hall resistivity as a function of the applied magnetic field at 2 K in units of Planck’s constant h, the elementary charge e and the Fermi wave vector along the applied magnetic field kF,z A sketch of the sample is shown at the top left. The three-dimensional Fermi surface of the electrons in ZrTe5 is shown at the bottom right.


    Contact for scientific information:

    Johannes Gooth


    Original publication:

    Galeski, S., Ehmcke, T., Wawrzyńczak, R. et al. Origin of the quasi-quantized Hall effect in ZrTe5. Nat Commun 12, 3197 (2021).
    https://doi.org/10.1038/s41467-021-23435-y


    More information:

    https://www.cpfs.mpg.de/3310301/20210527b?c=2332
    https://tu-dresden.de/tu-dresden/newsportal/news/elektronen-in-der-warteschlange...


    Images

    Figure caption (see last paragraph)
    Figure caption (see last paragraph)

    MPI CPfS


    Criteria of this press release:
    Journalists, Scientists and scholars, Students, Teachers and pupils, all interested persons
    Chemistry, Physics / astronomy
    transregional, national
    Research results
    English


     

    Figure caption (see last paragraph)


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).