idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
06/09/2021 11:00

One for all: Convergent mechanism of ageing discovered

Dr. Maren Berghoff Communications
Max-Planck-Institut für Biologie des Alterns

    Researchers at the Max Planck Institute for Biology of Ageing and the Cluster of Excellence for Ageing Research CECAD at the University of Cologne have discovered folate metabolism as a fundamental process for ageing. Its regulation underlies many known ageing signaling pathways and leads to longevity. This could provide a new opportunity to improve human health during ageing on a broad basis.

    Fundamental signalling pathway is crucial for longevity

    Several different causes of ageing have been discovered, but the question remains whether there are common underlying mechanisms that determine ageing and lifespan. Researchers from the Max Planck Institute for Biology of Ageing and the CECAD Cluster of Excellence in Ageing research at the University Cologne have now come across folate metabolism in their search for such basic mechanisms. Its regulation underlies many known ageing signalling pathways and leads to longevity. This may provide a new possibility to broadly improve human health during ageing.

    In recent decades, several cellular signalling pathways have been discovered that regulate the lifespan of an organism and are thus of enormous importance for ageing research. When researchers altered these signalling pathways, this extended the lifespan of diverse organisms. However, the question arises whether these different signalling pathways converge on common metabolic pathways that are causal for longevity.

    The search begins in the roundworm

    The scientists started their search in the roundworm Caenorhabditis elegans, a well-known model organism for ageing research. “We studied the metabolic products of several, long-lived worm lines. Our analyses revealed that, among other things, we observed clear changes in the metabolites and enzymes of the folate cycle in all worm lines. Since folate metabolism plays a major role in human health, we wanted to further pursue its role in longevity”, explains Dr. Andrea Annibal, lead author of the study.

    A common mechanism for longevity

    Folates are essential vitamins important for the synthesis of amino acids and nucleotides – the building blocks of our proteins and DNA. “We tuned down the activity of specific enzymes of folate metabolism in the worms. Excitingly, the result was an increase in lifespan of up to 30 percent”, says Annibal. “We also saw that in long-lived strains of mice, folate metabolism is similarly tuned down. Thus, the regulation of folate metabolism may underlie not only the various longevity signalling pathways in worms, but also in mammals.”

    ”We are very excited by these findings because they reveal the regulation of folate metabolism as a common shared mechanism that affects several different pathways of longevity and is conserved in evolution”, adds Prof. Dr. Adam Antebi, director at the Max Planck Institute for Biology of Ageing. “Thus, the precise manipulation of folate metabolism may provide a new possibility to broadly improve human health during ageing.” In future experiments, the group aims to find out the mechanism by which the folate metabolism affects longevity.


    Contact for scientific information:

    Prof. Dr. Adam Antebi
    Tel.: +49 221 379 70 400
    E-Mail: AAntebi@age.mpg.de


    Original publication:

    Andrea Annibal, Rebecca George Tharyan, Maribel Fides Schonewolff, Hannah Tam, Christian Latza, Markus Max Karl Auler, Adam Antebi
    Regulation of the one carbon folate cycle as a shared metabolic signature of longevity
    Nature Communications, June 9th, 2021
    DOI: 10.1038/s41467-021-23856-9


    More information:

    http://www.age.mpg.de
    https://www.nature.com/articles/s41467-021-23856-9


    Images

    Andrea Annibal uses the mass spectrometer to investigate various metabolites in long-lived worms and mice.
    Andrea Annibal uses the mass spectrometer to investigate various metabolites in long-lived worms and ...
    Link
    Max Planck Institute for Biology of Ageing


    Attachment
    attachment icon Pdf Press release

    Criteria of this press release:
    Journalists
    Biology, Medicine
    transregional, national
    Research results, Scientific Publications
    English


     

    Andrea Annibal uses the mass spectrometer to investigate various metabolites in long-lived worms and mice.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).