idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
06/17/2021 13:01

Wie maßgeschneiderte Laserfelder Eigenschaften transparenter Kristalle enthüllen

Romas Bielke Öffentlichkeitsarbeit
Georg-August-Universität Göttingen

    Die Oberfläche eines Materials besitzt häufig Eigenschaften, die sich gravierend von den Eigenschaften innerhalb des Materials unterscheiden. Beispielweise kann ein nicht-leitender Kristall, der eigentlich keine Magnetisierung aufweist, durch die Anordnung der Oberflächenatome eine auf die Grenzfläche begrenzte Magnetisierung besitzen. Diese abweichenden Eigenschaften an Grenz- und Oberflächen von Materialen spielen oft eine Schlüsselrolle bei der Entwicklung neuer funktionaler Bauelemente wie optoelektronischen Chips oder Sensoren und werden daher intensiv erforscht.

    Einem internationalen Forschungsteam der Universität Göttingen, des Max-Plank-Instituts für biophysikalische Chemie in Göttingen und des National Research Council Kanada ist es nun gelungen, Oberflächen transparenter Kristalle mittels starker Laserbestrahlung zu untersuchen. Die Ergebnisse der Studie sind in der Fachzeitschrift Nature Communications erschienen.

    Die Forscher beschreiben die rein optische Methode, um elektrische und magnetische Eigenschaften an Oberflächen zu bestimmen. Diese neue Methode könnte bei der Untersuchung transparenter, nicht-leitender Materialien eine wichtige Rolle spielen, da hier etablierte Methoden mit Elektronen unter anderem aufgrund der geringen Leitfähigkeit oft experimentellen Einschränkungen unterliegen. Die Verwendung von Licht umgeht diese Einschränkungen: Treffen Lichtstrahlen auf eine Materialoberfläche, beispielsweise eine Glasscheibe, werden sie an der Grenzfläche reflektiert, gebrochen und im Material absorbiert.

    Diese alltäglich beobachtbaren Effekte sind das Resultat der Wechselwirkung des schwachen Lichtfeldes mit den Atomen und Elektronen des beschienenen Materials. Bei stärkeren Lichtfeldern, die mit Lasern erzielt werden, kommt es zu weiteren Effekten, welche beispielweise höhere Lichtfrequenzen – sogenannte hohe Harmonische Strahlung – erzeugen können. Diese Effekte hängen dann oft von der Schwingungsrichtung des Lichtfeldes relativ zur atomaren Anordnung in dem Material ab.

    „Diese Abhängigkeit nutzen wir beim Erzeugen hoher harmonischer Strahlung aus, um Einblicke in die Eigenschaften an und nahe der Oberfläche von transparenten Materialen zu erhalten“, sagt Erstautor und Doktorand Tobias Heinrich vom IV. Physikalischen Institut der Universität Göttingen. „Das Lichtfeld, das wir dabei verwenden, ist aus zwei gegensätzlich rotierenden Laserimpulsen bei zwei unterschiedlichen Frequenzen zusammengesetzt, sodass in der Summe ein kleeblattförmiges symmetrisches Feld resultiert.“ Diese maßgeschneiderten Lichtfelder lassen sich an die Atomanordnung des Materials anpassen, um so die Erzeugung der hohen Harmonischen zu kontrollieren.

    „Wir zeigen, dass durch diese Kontrolle die Magnetisierung an der Oberfläche von Magnesiumoxid erforscht werden kann“, erläutert Dr. Murat Sivis, der Leiter der Studie. Dabei werde das erzeugte ultraviolette Licht in Abhängigkeit von der Rotationsrichtung des Lichtfeldes – auch Chiralität genannt – unterschiedlich stark an der Grenzfläche absorbiert. „Bei diversen Materialien, die eigentlich keine Magnetisierung oder elektrische Leitfähigkeit ausweisen, wurden solche Oberflächeneigenschaften theoretisch vorhergesagt“, so Sivis. „In unserer Studie zeigen wir, dass man solche Phänomene nun mit rein optischen Methoden untersuchen kann, vermutlich sogar auf sehr kurzen Zeitskalen.“

    Darüber hinaus versprechen sich die Forscher auch neue Einblicke in elektronische Eigenschaften anderer chiraler Materialien, wie die Studie am Beispiel der schraubenartigen Kristallstruktur von Quarz zeigt. Die Sensitivität auf chirale Phänomene an Oberflächen könnte generell neue Möglichkeiten bei der Erforschung neuartiger funktionaler Materialen eröffnen.


    Contact for scientific information:

    Dr. Murat Sivis
    Georg-August-Universität Göttingen, IV. Physikalisches Institut und
    Max-Planck-Institut für biophysikalische Chemie Göttingen, Abteilung „Ultraschnelle Dynamik“
    Telefon: 0551 39-24535
    Email: murat.sivis@uni-goettingen.de
    http://www.uni-goettingen.de/de/91116.html

    Tobias Heinrich
    Georg-August-Universität Göttingen, IV. Physikalisches Institut
    Telefon: 0551 39-26818
    Email: tobias.heinrich@uni-goettingen.de
    http://www.uni-goettingen.de/de/91116.html


    Original publication:

    Tobias Heinrich et al. „Chiral high-harmonic generation and spectroscopy on solid surfaces using polarization-tailored strong fields”. Nature Communications (2021). https://www.nature.com/articles/s41467-021-23999-9


    More information:

    https://www.uni-goettingen.de/de/3240.html?id=6297 Fotos


    Images

    Criteria of this press release:
    Journalists, all interested persons
    Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).