idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
07/08/2021 17:00

MaxDIA – taking proteomics to the next level

Dr. Christiane Menzfeld Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie

    Proteomics produces enormous amounts of data, which can be very complex to analyze and interpret. The free software platform MaxQuant has proven to be invaluable for data analysis of shotgun proteomics over the past decade. Now, Jürgen Cox, group leader at the Max Planck Institute of Biochemistry, and his team present the new version 2.0. It provides an improved computational workflow for data-independent acquisition proteomics, called MaxDIA. MaxDIA includes library-based and library-free DIA proteomics and permits highly sensitive and accurate data analysis. Uniting DDA and DIA into one world, MaxQuant 2.0 is a big step towards improving applications for personalized medicine.

    Proteins are essential for our cells to function, yet many questions about their synthesis, abundance, functions, and defects still remain unanswered. High-throughput techniques can help improve our understanding of these molecules. For analysis by liquid chromatography followed by mass spectrometry (MS), proteins are broken down into smaller peptides, in a process referred to as “shotgun proteomics”. The mass-to-charge ratio of these peptides is subsequently determined with a mass spectrometer, resulting in MS spectra. From these spectra, information about the identity of the analyzed proteins can be reconstructed. However, the enormous amount and complexity of data make data analysis and interpretation challenging.

    Two ways to analyze proteins with mass spectrometry
    Two main methods are used in shotgun proteomics: Data-dependent acquisition (DDA) and data-independent acquisition (DIA). In DDA, the most abundant peptides of a sample are preselected for fragmentation and measurement. This allows to reconstruct the sequences of these few preselected peptides, making analysis simpler and faster. However, this method induces a bias towards highly abundant peptides. DIA, in contrast, is more robust and sensitive. All peptides from a certain mass range are fragmented and measured at once, without preselection by abundance. As a result, this method generates large amounts of data, and the complexity of the obtained information increases considerably. Up to now, identification of the original proteins was only possible by matching the newly measured spectra against spectra in libraries that comprise previously measured spectra.

    Combining DDA and DIA into one world
    Jürgen Cox and his team have now developed a software that provides a complete computational workflow for DIA data. It allows, for the first time, to apply algorithms to DDA and DIA data in the same way. Consequently, studies based on either DDA or DIA will now become more easily comparable. MaxDIA analyzes proteomics data with and without spectral libraries. Using machine learning, the software predicts peptide fragmentation and spectral intensities. Hence, it creates precise MS spectral libraries in silico. In this way, MaxDIA includes a library-free discovery mode with reliable control of false positive protein identifications. Furthermore, the software supports new technologies such as bootstrap DIA, BoxCar DIA and trapped ion mobility spectrometry DIA. What are the next steps? The team is already working on further improving the software. Several extensions are being developed, for instance for improving the analysis of posttranslational modifications and identification of cross-linked peptides.

    Enabling researchers to conduct complex proteomics data analysis
    MaxDIA is a free software available to scientists all over the world. It is embedded in the established software environment MaxQuant. “We would like to make proteomics data analysis accessible to all researchers”, says Pavel Sinitcyn, first author of the paper that introduces MaxDIA. Thus, at the MaxQuant summer school, Cox and his team offer hands-on training in this software for all interested researchers. They thereby help bridging the gap between wet lab work and complex data analysis.

    Application in the clinics
    Sinitcyn states that the aim is to “bring mass spectrometry from the MPI of Biochemistry to the clinics”. Instead of measuring only a few proteins, thousands of proteins can now be measured and analyzed. This opens up new possibilities for medical applications, especially in the field of personalized medicine.


    Contact for scientific information:

    Dr. Jürgen Cox
    Computational Systems Biochemistry
    Max Planck Institute of Biochemistry
    Am Klopferspitz 18
    82152 Martinsried/Munich
    Germany
    cox@biochem.mpg.de


    Original publication:

    P. Sinitcyn, H. Hamzeiy, F. S. Soto, D. Itzhak, F. McCarthy, C. Wichmann, M. Steger, U. Ohmayer, U. Distler, S. Kaspar-Schoenefeld, N. Prianichnikov, Ş. Yılmaz, J. D. Rudolph, S. Tenzer, Y. Perez-Riverol, N. Nagaraj, S. J. Humphrey and J. Cox: MaxDIA enables library-based and library-free data-independent acquisition proteomics, Nature Biotechnology, July 2021
    https://www.nature.com/articles/s41587-021-00968-7


    More information:

    https://www.biochem.mpg.de/cox - Research Website of Dr. Jürgen Cox
    https://www.maxquant.org/ - MaxQuant Website


    Images

    MaxQuant 2.0 unites the two branches of shotgun proteomics – DIA and DDA – into one software environment.
    MaxQuant 2.0 unites the two branches of shotgun proteomics – DIA and DDA – into one software environ ...
    Sonja Taut
    MPI of Biochemistry


    Criteria of this press release:
    Journalists, Scientists and scholars, Students
    Biology, Chemistry, Medicine
    transregional, national
    Scientific Publications, Transfer of Science or Research
    English


     

    MaxQuant 2.0 unites the two branches of shotgun proteomics – DIA and DDA – into one software environment.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).