idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
07/12/2021 11:03

Wie reagieren unsere Zellen auf Hunger oder Stress?

Dr. Maren Berghoff Communications
Max-Planck-Institut für Biologie des Alterns

    Zellen reagieren auf Hunger oder Stress indem sie die Zusammensetzung der Proteine auf der Zelloberfläche verändern. Forschende vom Max-Planck-Institut für Biologie des Alterns in Köln haben jetzt herausgefunden, dass ein Proteinkomplex, mTORC1 genannt, ein zentraler Koordinator dieses Prozesses ist. Diese Erkenntnisse könnten in Zukunft wichtig sein für die Entwicklung von Therapien für Krankheiten, bei denen die Aktivität dieses Proteinkomplexes bekanntermaßen fehlreguliert ist, wie zum Beispiel bei Krebs, neurologischen oder metabolischen Störungen oder im Alter.

    Unsere Zellen kommunizieren mit ihrer Umgebung auf eine wechselseitige Weise. Einerseits nehmen sie über Proteine auf ihrer Oberfläche ständig Signale aus ihrer Umgebung auf und geben sie an das Zellinnere weiter. Andererseits senden sie Signale nach außen, indem sie Faktoren freisetzen oder durch Proteine, die auf ihrer Oberfläche sitzen. Obwohl seit Jahrzehnten bekannt ist, dass diese bidirektionale Kommunikation entscheidend für die Zellfunktion ist und bei Krankheiten oft gestört ist, war bisher nicht klar, wie dies in den Zellen tatsächlich funktioniert. Forschende des Max-Planck-Instituts für Biologie des Alterns und der Universität Köln haben nun herausgefunden, dass ein Proteinkomplex, mTORC1 genannt, ein zentraler Koordinator dieses Prozesses ist. Diese Erkenntnisse könnten in Zukunft wichtig sein für die Entwicklung von Therapien für Krankheiten, bei denen die Aktivität dieses Proteinkomplexes bekanntermaßen fehlreguliert ist, wie zum Beispiel bei Krebs, neurologischen oder metabolischen Störungen oder im Alter.

    Die Zellen, aus denen unser Körper besteht, senden und empfangen ständig Signale an und von ihrer Umgebung. Auf diese Weise spüren sie, ob sie genügend Nährstoffe, Energie, Sauerstoff und alles andere haben, was sie zum Wachsen und Vermehren brauchen. Wenn Nährstoffe knapp werden oder wenn Zellen anderen stressigen Bedingungen ausgesetzt sind, müssen sie darauf reagieren und sich entsprechend anpassen: Sie ändern, wie sie sich bewegen, wie sie Nährstoffe aufnehmen oder wie sie mit benachbarten Zellen und Oberflächen interagieren. Um dies zu erreichen, müssen Zellen die Menge der Oberflächen- und sekretierten Proteine quantitativ und qualitativ umgestalten, was sie durch die Aktivierung komplexer Frachttransportmechanismen tun.

    "Ein Weg, über den Zellen Proteine transportieren oder sezernieren, heißt „Unconventional Protein Secretion“, kurz UPS. Dieser Weg wird bei Stress aktiviert und es wurde bereits gezeigt, dass er Proteine transportiert, die bei Krebs, Entzündungen und Knochenbildung eine wichtige Rolle spielen", erklärt Dr. Julian Nüchel, derzeit Postdoc am Max-Planck-Institut für Biologie des Alterns und Erstautor der Studie. "Wie UPS in gestressten oder ausgehungerten Zellen aktiviert wird, war nicht bekannt. Als wir die Regulation dieses sekretorischen Weges im Detail untersuchten, fanden wir heraus, dass der zelluläre Sensor mTORC1 diesen Prozess steuert." Der Proteinkomplex mTORC1 fungiert als wichtigster Sensor der Zelle und verknüpft Signale wie Energie- und Ernährungszustand mit fast allen grundlegenden zellulären Aktivitäten.

    Zellulärer Stress verändert die Proteine an der Zelloberfläche

    In ihren Experimenten zeigten die Kölner Forschenden, dass verschiedene zelluläre Stressfaktoren, wie zum Beispiel Nährstoffmangel, den Proteinkomplex mTORC1 inaktivieren und den UPS-Transportweg einschalten. "Unter normalen Bedingungen ist mTORC1 aktiv und fügt bestimmten Proteinen eine kleine chemische Modifikation, die sogenannte Phosphorylierung, hinzu und verändert so deren Aktivität oder Lokalisation innerhalb der Zelle", erklärt Forschungsgruppenleiter Dr. Constantinos Demetriades. Im Fall der Kölner Studie konnte gezeigt werden, dass mTORC1 die Lokalisation und Funktion eines Proteins namens GRASP55 steuert, das sich normalerweise im Golgi-Apparat, dem Sortierzentrum für Proteinfracht in der Zelle, befindet. "Unter Stressbedingungen, wenn mTORC1 inaktiviert ist, wird GRASP55 nicht mehr im Golgi gehalten und wandert in andere Kompartimente, um UPS zu fördern."

    Neben dem Nachweis, wie UPS in Zellen reguliert wird, gelang es den Forschenden auch, die Proteine zu identifizieren, die auf diesen Weg angewiesen sind, um die Zelloberfläche zu erreichen. Sie entdeckten Faktoren, die eine wichtige Rolle bei der Zellbewegzbg und -kommunikation spielen - Prozesse, die bei menschlichen Krankheiten häufig gestört sind. Dr. Demetriades erklärt: "In Zellen, in denen die mTORC1-Aktivität gestört ist, ist auch der UPS-Transportweg fehlreguliert. Daher könnte dieser sekretorische Weg bei mTOR-bedingten Krankheiten, wie zum Beispiel bei „Tuberous Sclerosis Complex“, eine entscheidende Rolle spielen. Zukünftige Studien in dieser Richtung werden notwendig sein, um die Bedeutung von UPS bei Krankheiten und Alterung des Menschen zu erforschen."

    Diese Studie war eine Zusammenarbeit zwischen der Gruppe von Dr. Constantinos Demetriades am Max-Planck-Institut für Biologie des Alterns und der Gruppe von Dr. Markus Plomann am Zentrum für Biochemie der Universität zu Köln, unterstützt von Dr. Beate Eckes vom Labor für Translationale Matrixbiologie der Universität zu Köln sowie Forschern des CECAD Exzellenzclusters für Alternsforschung der Universität zu Köln und Colzyx AB aus Schweden. Das Projekt wurde durch den Europäischen Forschungsrat (ERC), die Deutsche Forschungsgemeinschaft (DFG) und die Max-Planck-Gesellschaft (MPG) gefördert.


    Contact for scientific information:

    Dr. Constantinos Demetriades, Demetriades(at)age.mpg.de


    Original publication:

    Julian Nüchel, Marina Tauber, Janica L Nolte, Matthias Mörgelin, Clara Türk, Beate Eckes, Constantinos Demetriades, Markus Plomann
    An mTORC1-GRASP55 signaling axis controls unconventional secretion to reshape the extracellular proteome upon stress
    Mol Cell, Juli 2021


    More information:

    http://pubmed.ncbi.nlm.nih.gov/34245671/ Link zur Originalveröffentlichung
    http://www.age.mpg.de


    Images

    Immunfluoreszens- und elektronenmikroskopische Aufnahmen zeigen die Lokalisation von GRASP55 und mTORC.
    Immunfluoreszens- und elektronenmikroskopische Aufnahmen zeigen die Lokalisation von GRASP55 und mTO ...
    Julian Nüchel
    Max-Planck-Institut für Biologie des Alterns


    Attachment
    attachment icon Pdf zur Pressemitteilung

    Criteria of this press release:
    Journalists
    Biology, Medicine
    transregional, national
    Research results
    German


     

    Immunfluoreszens- und elektronenmikroskopische Aufnahmen zeigen die Lokalisation von GRASP55 und mTORC.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).