idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
07/21/2021 08:55

Im All Elektronen fangen

Dr. Christian Flatz Büro für Öffentlichkeitsarbeit
Universität Innsbruck

    Stabförmige Moleküle können mit ihrem permanenten Dipolmoment freie Elektronen in eine Bindung locken. Physiker der Universität Innsbruck haben im Labor Dipol-gebundene Zustände eindeutig nachgewiesen. Diese könnten ein Zwischenschritt zur Entstehung negativ geladener Moleküle sein und die Existenz von negativen Ionen in interstellaren Wolken im Weltraum erklären.

    Interstellare Wolken sind die Geburtsstätten von Sternen, sie könnten aber auch eine wichtige Rolle bei der Entstehung von Leben spielen. Denn zwischen den Sternen einer Galaxie gibt es Regionen aus Staub und Gas, in denen sich chemische Verbindungen bilden. Die Forschungsgruppe um ERC-Preisträger Roland Wester am Institut für Ionenphysik und Angewandte Physik der Universität Innsbruck hat es sich zur Aufgabe gemacht, die Entwicklung elementarer Moleküle im All besser zu verstehen. „Mit unserer Ionenfalle können wir, vereinfacht gesagt, das All ins Labor holen“, erklärt Roland Wester. „In der Apparatur lässt sich die Bildung von chemischen Verbindungen im Detail studieren.“ Nun haben die Wissenschaftler um Roland Wester eine Erklärung dafür gefunden, wie sich negativ geladene Moleküle im All bilden.

    Theoretische Idee weist den Weg

    Bis zur Entdeckung der ersten negativ geladenen Kohlenstoffverbindungen im Weltraum im Jahr 2006 ging die Wissenschaft davon aus, dass interstellare Wolken nur positiv geladene Ionen enthalten. Seither war offen, wie es zur Bildung negativ geladener Ionen kommt. Der italienische Theoretiker Franco A. Gianturco, der seit acht Jahren als Wissenschaftler an der Universität Innsbruck tätig ist, hatte vor einigen Jahren theoretische Überlegungen angestellt, die eine mögliche Erklärung dafür liefern. Sehr schwache Verbindungen, sogenannte Dipol-gebundene Zustände, sollen die Anbindung von freien Elektronen an stabförmige Moleküle ermöglichen. Solche Moleküle haben ein permanentes Dipolmoment, das in relativ weiter Entfernung vom neutralen Kern eine starke Wechselwirkung erzeugt und unter deren Einfluss sich die Bewegung eines Elektrons massiv verändert.

    Lockt Elektronen in die Falle

    In ihrem Experiment haben die Innsbrucker Physiker Moleküle aus drei Kohlenstoffatomen und einem Stickstoffatom erzeugt, diese ionisiert und in einer Ionenfalle bei extrem tiefen Temperaturen mit Laserlicht beschossen. Dabei änderten sie die Frequenz des Lichtes kontinuierlich solange, bis die zugeführte Energie groß genug war, um ein Elektron aus dem Molekül zu lösen. Diesen sogenannten Photoeffekt hatte Albert Einstein schon vor 100 Jahren beschrieben. Eine eingehende Analyse der Messdaten durch den Nachwuchswissenschaftler Malcolm Simpson vom Doktoratskolleg Atome, Licht und Moleküle an der Universität Innsbruck brachte schließlich Licht in dieses schwer zu beobachtende Phänomen. Ein Vergleich der Messdaten mit einem Computermodell erbrachte schließlich den eindeutigen Nachweis für die Existenz von Dipol-gebundenen Zuständen. „Unsere These ist, dass diese Dipol-gebundener Zustände eine Art Türöffner für die Bindung freier Elektronen an Moleküle darstellen und so zur Entstehung negativer Ionen im Weltraum beitragen“, sagt Roland Wester. „Ohne diesen Zwischenschritt wäre es sehr unwahrscheinlich, dass Elektronen tatsächlich an die Moleküle binden.“

    Finanziell unterstützt wurde die Arbeit vom österreichischen Wissenschaftsfonds FWF, der das Doktoratskolleg Atome, Licht und Moleküle (ALM) an der Universität Innsbruck finanziert.


    Contact for scientific information:

    Univ.-Prof. Dr. Roland Wester
    Institut für Ionenphysik und Angewandte Physik
    Universität Innsbruck
    Tel.: +43 512 507-52620
    E-Mail: roland.wester@uibk.ac.at
    Web: https://www.uibk.ac.at/ionen-angewandte-physik/


    Original publication:

    Influence of a supercritical electric dipole moment on the photodetachment of C3N-. Malcolm Simpson, Markus Nötzold, Tim Michaelsen, Robert Wild, Franco A. Gianturco, and Roland Wester. Phys. Rev. Lett. 127, 043001 https://link.aps.org/doi/10.1103/PhysRevLett.127.043001


    Images

    Die Physiker Roland Wester (li.) und Malcolm Simpson (re.) demonstrieren, wie Dipol-gebundene Zustände die Entstehung negativer Ionen in interstellaren Wolken ermöglichen.
    Die Physiker Roland Wester (li.) und Malcolm Simpson (re.) demonstrieren, wie Dipol-gebundene Zustän ...

    Bryan Goff on Unsplash / AG Wester


    Criteria of this press release:
    Journalists, all interested persons
    Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Die Physiker Roland Wester (li.) und Malcolm Simpson (re.) demonstrieren, wie Dipol-gebundene Zustände die Entstehung negativer Ionen in interstellaren Wolken ermöglichen.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).