idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
08/24/2021 09:13

Wie sich die ersten Wurzeln vor mehr als 400 Millionen Jahren entwickelten

Mehrdokht Tesar Presse- und Öffentlichkeitsarbeit
Gregor Mendel Institut für Molekulare Pflanzenbiologie (GMI)

    Entwicklung der Pflanzenwurzeln als Wurzel der Pflanzenevolution – mit dramatischen ökologischen Folgen

    Ein Pflanzenfossil aus einer geologischen Formation in Schottland bringt neue Erkenntnisse über die Entwicklung der frühesten bekannten Form von Wurzeln.

    Ein Team unter der Leitung von Forschern des Wiener Gregor Mendel Instituts für Molekulare Pflanzenbiologie der Österreichischen Akademie der Wissenschaften (GMI), der Universität Edinburgh und der Universität Oxford hat die erste 3D-Rekonstruktion einer Pflanze aus dem Devon realisiert, die ausschließlich auf fossilen Belegen beruht. Die Ergebnisse zeigen, dass das Auftreten verschiedener Achsentypen an den Verzweigungspunkten zur weiteren Diversifizierung führte, kurz nachdem sich die Landpflanzen vor etwa 400 Millionen Jahren entwickelt hatten. Die Ergebnisse wurden nun im Journal eLife veröffentlicht.

    Neue Forschungsergebnisse zeigen, wie sich die älteste bekannte Wurzelachse vor mehr als 400 Millionen Jahren entwickelte. Die Entwicklung der Wurzeln zu dieser Zeit war ein einschneidendes Ereignis, das sich auf unseren Planeten und unsere Atmosphäre auswirkte und zu ökologischen und klimatischen Veränderungen führte.

    Die erste evidenzbasierte 3D-Rekonstruktion von fossilen Asteroxylon mackiei, einer strukturell komplexen Pflanze aus dem Rhynie Chert, zeigt, wie sich Wurzeln und andere Arten von Achsen in dieser uralten, ausgestorbenen Pflanze entwickelten. Das Fossil ist im Hornstein (einer Art Feuerstein, engl. chert) erhalten, der in der Nähe des Dorfes Rhynie in Aberdeenshire, Schottland, gefunden wurde. Die Exemplare sind in den 407 Millionen Jahre alten Gesteinen aus der frühen Devonzeit außergewöhnlich gut erhalten.

    Die ausgestorbene Gattung Asteroxylon gehört zur Pflanzengruppe der Lycophyten, einer Klasse, die auch lebende Vertreter wie Isoetes (Brachsenkräuter) und Selaginella (Moosfarne) umfasst. Durch die Rekonstruktion konnten die Forscher zum ersten Mal sowohl anatomische als auch entwicklungsgeschichtliche Informationen über dieses Fossil gewinnen. Dies ist von besonderer Bedeutung, da frühere Interpretationen des Aufbaus dieser fossilen Pflanze weitgehend auf dem Vergleich von Bildfragmenten mit noch vorhandenen Pflanzen basierten.

    Die Rekonstruktion zeigt, dass diese Pflanzen ihre Wurzeln auf eine ganz andere Art und Weise entwickelt haben, als dies bei heutigen Pflanzen der Fall ist. Die Wurzelachsen von A. mackiei sind die frühesten bekannten Arten von Pflanzenwurzeln. "Dies sind die ältesten bekannten Strukturen, die modernen Wurzeln ähneln, und wir wissen jetzt, wie sie entstanden sind. Sie entwickelten sich, als eine sprossähnliche Achse eine Gabelung bildete, bei der eine Zinke seine Sprossidentität behielt und der zweite seine Wurzelidentität entwickelte", sagt Liam Dolan, Gruppenleiter am Wiener GMI. Dieser Mechanismus der Verzweigung, die so genannte "dichotome Verzweigung", ist bei lebenden Pflanzen in Geweben bekannt, die eine strukturelle Identität aufweisen. Wie Dolan jedoch betont: "Bei lebenden Pflanzen entwickeln sich Wurzeln nicht auf diese Weise, was zeigt, dass dieser Mechanismus der Wurzelbildung heute ausgestorben ist". Die Forschungsergebnisse zeigen, wie sich ein heute ausgestorbenes Wurzelsystem während der Evolution der ersten komplexen Landpflanze entwickelt hat.

    "100 Jahre nach der Entdeckung der Fossilien in Rhynie zeigt unsere Rekonstruktion, wie diese rätselhaften Pflanzen wirklich aussahen. Die Rekonstruktion zeigt auch, wie sich die Wurzeln gebildet haben", erklärt Dolan, der als Co-Autor an der Arbeit mitgewirkt hat. “Das Verständnis der Struktur und der Entwicklung dieser Pflanzen aus dem frühen Devon gibt uns einen Einblick in die Schlüsselzeit der Erdgeschichte, kurz nachdem die Pflanzen die trockenen Oberflächen der Kontinente besiedelten und sich über das Land auszubreiten begannen.”

    "Ihre Entwicklung, Ausbreitung und Verbreitung über alle Kontinente hinweg hatte dramatische Auswirkungen auf das Erdsystem. Pflanzenwurzeln verringerten den CO2-Gehalt in der Atmosphäre, stabilisierten den Boden und revolutionierten die Wasserzirkulation auf den Oberflächen der Kontinente", erklärt Erstautor und Co-Autor Alexander (Sandy) J. Hetherington, Gruppenleiter an der Universität Edinburgh. “Die Wurzel der ökologischen Auswirkungen der Pflanzenevolution sind die Pflanzenwurzeln selbst.”

    Hetherington hob hervor, dass seine Forschung durch Fossilien ermöglicht wurde, die von Generationen von Paläontologen und Paläontologinnen gesammelt wurden und in vielen verschiedenen Museen und Universitäten aufbewahrt werden. "Die Antworten auf so viele Schlüsselfragen der Evolution liegen in den Regalen dieser Institutionen", sagt der Wissenschaftler, der jetzt an der Universität Edinburgh arbeitet. "Mit Hilfe digitaler 3D-Techniken ist es zum ersten Mal möglich, den komplexen Körperbau von A. mackiei zu visualisieren. So konnten wir entdecken, wie sich diese mysteriösen Pflanzen entwickelt haben. Es war großartig, endlich Details zu sehen, die bisher verborgen waren."

    Originalveröffentlichung:
    Hetherington A. J. et al. "An evidence-based 3D reconstruction of Asteroxylon mackiei the most complex plant preserved from the Rhynie chert”. eLife 2021
    DOI: https://doi.org/10.7554/eLife.69447

    Über das GMI

    Das Gregor Mendel Institut für Molekulare Pflanzenbiologie (GMI) wurde von der Österreichischen Akademie der Wissenschaften (ÖAW) im Jahr 2000 gegründet, um Spitzenforschung in der molekularen Pflanzenbiologie zu fördern. Das GMI gehört zu den weltweit wichtigsten Pflanzenforschungseinrichtungen. Mit mehr als 130 Mitarbeiterinnen und Mitarbeitern aus 35 Ländern erforschen die neun Forschungsgruppen des GMI Grundlagen der Pflanzenbiologie, vor allem molekulargenetische Aspekte wie epigenetische Mechanismen, Populationsgenetik, Zellbiologie, Stressresistenz und Entwicklungsbiologie. Das GMI befindet sich am Vienna BioCenter, einem der führenden Life-Science-Standorte Europas.

    Für weitere Informationen und druckfähige Versionen der Bilder wenden Sie sich bitte an:

    Gregor Mendel Institut für molekulare Pflanzenbiologie der ÖAW

    Daniel Azar
    daniel.azar@gmi.oeaw.ac.at
    +43 1 79044 3821

    Sylvia Weinzettl
    sylvia.weinzettl@gmi.oeaw.ac.at
    +43 1 79044 4403

    floorfour LifeScience + Health PR | www.floorfour.at

    Mehrdokht Tesar
    tesar@floorfour.at
    +43-699-171 31 621

    Thomas Kvicala
    kvicala@floorfour.at
    +43-660-444 00 47


    Contact for scientific information:

    Sylvia Weinzettl
    sylvia.weinzettl@gmi.oeaw.ac.at
    +43 1 79044 4403


    Original publication:

    https://doi.org/10.7554/eLife.69447


    Images

    3D-Rekonstruktion eines Fossils
    3D-Rekonstruktion eines Fossils

    ©Sandy Hetherington

    Künstlerische Rekonstruktion von A. mackiei
    Künstlerische Rekonstruktion von A. mackiei

    ©Matt Humpage


    Criteria of this press release:
    Journalists
    Biology, Environment / ecology, History / archaeology, Oceanology / climate, Zoology / agricultural and forest sciences
    transregional, national
    Research results, Scientific Publications
    German


     

    3D-Rekonstruktion eines Fossils


    For download

    x

    Künstlerische Rekonstruktion von A. mackiei


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).