Nicht nur Stickstoffmonoxid (NO), auch Schwefelwasserstoff (H2S) agiert als gasförmiges Signalmolekül mit ganz ähnlichen physiologischen Wirkungen. Viele der entscheidenden Fragen über ihr Zusammenspiel hängen von ihrer chemischen Reaktivität und der flüchtigen Existenz von HSNO ab, einem Schlüsselprodukt der Reaktion zwischen beiden. Durch Bindung an einen Zink-Komplex konnte ein Forschungsteam jetzt zwei mit diesem Signalweg in Verbindung stehende Spezies stabilisieren, isolieren und charakterisieren, wie sie in der Zeitschrift Angewandte Chemie berichten.
NO ist ein zentrales Signalmolekül in der Biologie, das eine Vielzahl verschiedener physiologischer Funktionen reguliert, wie Gefäßerweiterung, Weiterleitung von Nervenimpulsen und Zellschutz. Interessanterweise zeigt H2S die gleichen Effekte, es entspannt glatte Muskelzellen, die bei der Gefäßerweiterung eine Rolle spielen. HSNO könnte daher eine der Schlüsselrollen bei der Überschneidung dieser Signalwege spielen. Diese extrem reaktive Spezies ist jedoch so instabil, dass ihre Biochemie und Reaktionswege nur sehr schwer zu entschlüsseln sind. HSNO dringt leicht durch Zellmembranen und kann Proteine nitrosylieren, indem es seine Nitrosylgruppe (-N=O) auf andere Seitengruppen überträgt, vor allem auf Cystein – ein wichtiger Schritt bei verschiedenen zellulären Regulationsmechanismen. Bei physiologischen pH-Werten liegt HSNO vermutlich als Thionitrit-Anion SNO− vor, das instabil ist und leicht in das Perthionitrit-Anion SSNO– umgewandelt wird.
Timothy H. Warren und Valiallah Hosseininasab von der Georgetown University (Washington, DC, USA) stabilisierten die Anionen SNO− und SSNO− durch eine Bindung an einen speziellen Zink-Komplex, der durch eine gängige Umgebung für Zink in der Biologie inspiriert war. Zink ist ein wichtiges physiologisches Metall, das an unzähligen Prozessen beteiligt ist, u.a. an der Regulierung des pH-Werts von Blut. Zudem reagieren Moleküle, die am NO-Signalweg beteiligt sind, wie H2S und S-Nitrosothiole (Moleküle mit einer –S–N=O Gruppe), leicht mit Zink-Schwefel-Bindungen. Diese bilden wichtige strukturelle Einheiten, deren Modifikation in Proteinen zu funktionellen Änderungen führen.
Das Georgetown-Team zeigte, dass Zink-Komplexe, die SNO−- und SSNO−-Anionen enthalten, isoliert und charakterisiert werden können. Die Untersuchung ihrer Reaktivitätsmuster ergab interessante Unterschiede ihrer Reaktionen mit Thiolen (Substanzen mit einer Schwefelwasserstoff-Gruppe –SH), allgegenwärtigen Antioxidanzien, die helfen, Zellschäden zu vermeiden. Währand Reaktionen mit Perthionitrit NO bilden, bildet Thionitrit entweder Distickstoffmonoxid (Lachgas) N2O oder S-Nitrosothiole, die als Reservoir für NO dienen. Diese Ergebnisse lassen vermuten, dass kleinste Unterschiede im Verlauf physiologischer Signalwege zu unterschiedlichen „ausgegebenen Signalen“ führen können, die letztlich aus einem Zusammenspiel von NO und H2S resultieren.
Angewandte Chemie: Presseinfo 24/2021
Autor/-in: Timothy H. Warren, Georgetown University (USA), https://chemistry.georgetown.edu/warren/
Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany.
Die "Angewandte Chemie" ist eine Publikation der GDCh.
https://doi.org/10.1002/ange.202104906
Dem NO-Signalweg auf der Spur
(c) Wiley-VCH
Criteria of this press release:
Journalists, Scientists and scholars, Students
Biology, Chemistry
transregional, national
Research results, Scientific Publications
German
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).