idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
09/15/2021 11:41

Fireproof and comfortable

Rainer Klose Kommunikation
Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

    A new chemical process developed by Empa turns cotton into a fire-resistant fabric, that nevertheless retains the skin-friendly properties of cotton.

    State-of-the-art flame retardant cotton textiles suffer from release of formaldehyde and are uncomfortable to wear. Empa scientists managed to circumvent this problem by creating a physically and chemically independent network of flame retardants inside the fibers. This approach retains the inherently positive properties of cotton fibers, which account for three-quarters of the world's demand for natural fibers in clothing and home textiles. Cotton is skin-friendly because it can absorb considerable amounts of water and maintain a favorable microclimate on the skin.
    For firefighters and other emergency service personnel, protective clothing provides the most important barrier. For such purposes, cotton is mainly used as an inner textile layer that needs additional properties: For example, it must be fireproof or protect against biological contaminants. Nevertheless, it should not be hydrophobic, which would create an uncomfortable microclimate. These additional properties can be built into the cotton fibers by suitable chemical modifications.

    Durability vs. toxicity
    "Until now, it has always taken a compromise to make cotton fireproof," says Sabyasachi Gaan, a chemist and polymer expert who works at Empa's Advanced Fibers lab. Wash-durable flame retardant cotton in industry is produced by treating the fabric with flame retardants, which chemically links to the cellulose in the cotton. Currently, the textile industry has no other choice than to utilize formaldehyde-based chemicals – and formaldehyde is classified as a carcinogen. This has been an unsolved problem for decades. While formaldehyde-based flame retardant treatments are durable, they have additional drawbacks: The -OH groups of cellulose are chemically blocked, which considerably reduces the capability of cotton to absorb water, which results in an uncomfortable textile.
    Gaan knows the chemistry of cotton fibers well and has spent many years at Empa developing flame retardants based on phosphorus chemistry that are already used in many industrial applications. Now he has succeeded in finding an elegant and easy way to anchor phosphorous in form of an independent network inside the cotton.

    Independent network between cotton fibers
    Gaan and his colleagues Rashid Nazir, Dambarudhar Parida and Joel Borgstädt utilized a tri-functional phosphorous compound (trivinylphosphine oxide), which has the capability of reacting only with specifically added molecules (nitrogen compounds like piperazin) to form its own network inside cotton. This makes the cotton permanently fire-resistant without blocking the favorable -OH groups. In addition, the physical phosphine oxide network also likes water. This flame retardant treatment does not include carcinogenic formaldehyde, which would endanger textile workers during textile manufacturing. The phosphine oxide networks, thus formed, does not wash out: After 50 launderings, 95 percent of the flame retardant network is still present in the fabric.
    To render additional protective functionalities to the flame retardant cotton developed at Empa, the researchers also incorporated in situ generated silver nanoparticles inside the fabric. This works nicely in a one-step process together with generating the phosphine oxide networks. Silver nanoparticles provide the fiber with antimicrobial properties and survive 50 laundry cycles, too.

    A high-tech solution from the pressure cooker
    "We have used a simple approach to fix the phosphine oxide networks inside the cellulose," Gaan says. "For our lab experiments, we first treated the cotton with an aqueous solution of phosphorus and nitrogen compounds and then steamed it in a readily available pressure cooker to facilitate the crosslinking reaction of the phosphorus and the nitrogen molecules." The application process is compatible with equipment used in the textile industry. "Steaming textiles after dyeing, printing and finishing is a normal step in textile industry. So it doesn't require an additional investment to apply our process," states the Empa chemist.
    Meanwhile, this newly developed phosphorus chemistry and its application is protected by a patent application. "Two important hurdles remain," Gaan says. "For future commercialization we need to find a suitable chemical manufacturer who can produce and supply trivinylphosphine oxide. In addition, trivinylphosphine oxide has to be REACH-registered in Europe.''


    Contact for scientific information:

    Dr. Sabyasachi Gaan
    Advanced Fibers
    Phone +41 58 765 7611
    sabyasachi.gaan@empa.ch

    Prof. Dr. Manfred Heuberger
    Advanced Fibers
    Tel: +41 58 765 7878
    manfred.heuberger@empa.ch

    Editor / Media contact
    Rainer Klose
    Communication
    Phone +41 58 765 47 33
    redaktion@empa.ch


    Original publication:

    R Nazir, D Parida, J Borgstädt, S Lehner, M Jovic, D Rentsch, E Bülbül, A Huch, S Altenried, Q Ren, P Rupper, S Annaheim, S Gaan; "In-situ phosphine oxide physical networks: A facile strategy to achieve durable flame retardant and antimicrobial treatments of cellulose", Chemical Engineering Journal (2021); doi: 10.1016/j.cej.2020.128028.


    More information:

    https://www.empa.ch/web/s604/fire-resistant-cotton


    Images

    Cost effective: Sabyasachi Gaan uses steam from a commercial pressure cooker to flame retard samples of cotton fabric.
    Cost effective: Sabyasachi Gaan uses steam from a commercial pressure cooker to flame retard samples ...

    Empa


    Criteria of this press release:
    Journalists
    Chemistry, Materials sciences
    transregional, national
    Research results, Transfer of Science or Research
    English


     

    Cost effective: Sabyasachi Gaan uses steam from a commercial pressure cooker to flame retard samples of cotton fabric.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).