Nanoteilchen sind in unserer Umgebung allgegenwärtig: Viren in der Raumluft, Proteine im Körper, als Bausteine neuer Materialien etwa für die Elektronik oder in Oberflächenbeschichtungen. Wer die winzigen Partikel sichtbar machen will, hat ein Problem: Sie sind so klein, dass man sie unter einem optischen Mikroskop meist nicht sieht. Forschende am Karlsruher Institut für Technologie (KIT) haben einen Sensor entwickelt, mit dem sie Nanoteilchen nicht nur aufspüren, sondern auch ihre Beschaffenheit bestimmen und ihre räumliche Bewegung nachverfolgen können. Ihren neuartigen Fabry-Pérot Resonator präsentieren sie in der Zeitschrift Nature Communications (DOI: 10.1038/s41467-021-26719-5).
Gängige Mikroskope erzeugen stark vergrößerte Bilder von kleinen Strukturen oder Objekten mit Hilfe von Licht. Weil die Nanoteilchen aufgrund ihrer Winzigkeit aber kaum Licht absorbieren oder streuen, bleiben sie unsichtbar. Optische Resonatoren hingegen verstärken die Wechselwirkung zwischen Licht und Nanoteilchen: Sie halten Licht auf kleinem Raum gefangen, indem es tausende Male zwischen zwei Spiegeln reflektiert wird. Befindet sich ein Nanoteilchen in dem gefangenen Lichtfeld, dann wechselwirkt das Nanoteilchen tausende Male mit dem Licht, so dass die Änderung der Lichtintensität messbar wird. „Weil das Lichtfeld an verschiedenen Stellen im Raum unterschiedliche Intensitäten hat, können wir Rückschlüsse auf die Position des Nanoteilchens im dreidimensionalen Raum ziehen“, sagt Dr. Larissa Kohler vom Physikalischen Institut am KIT.
Resonator macht Bewegungen der Nanoteilchen sichtbar
Und nicht nur das: „Wenn sich ein Nanoteilchen in Wasser befindet, stößt es mit den Wassermolekülen zusammen, welche sich aufgrund von thermischer Energie in willkürliche Richtungen bewegen. Durch die Stöße führt das Nanoteilchen eine Art Zitterbewegung aus. Auch diese Brownsche Bewegung können wir nun nachvollziehen“, so die Expertin. „Bislang konnte mit einem optischen Resonator nicht die räumliche Bewegung eines Nanoteilchens nachverfolgt werden, sondern man konnte nur sagen, dass sich das Teilchen im Lichtfeld befindet oder nicht“, erläutert Kohler. Obendrein eröffne der neuartige faserbasierte Fabry-Pérot Resonator, bei dem sich die hochreflektierenden Spiegel auf den Endflächen von Glasfasern befinden, die Möglichkeit, aus der dreidimensionalen Bewegung den hydrodynamischen Radius des Teilchens, also die Dicke der es umgebenden Hülle aus Wasser, abzuleiten. Das ist entscheidend, weil diese die Eigenschaften des Nanoteilchens verändert. „Zum Beispiel können aufgrund der Hydrathülle noch Nanoteilchen detektiert werden, die ohne diese Hülle zu klein wären“, sagt Kohler. Ebenso könnte die Hydrathülle um Proteine oder andere biologische Nanoteilchen einen Einfluss bei biologischen Vorgängen haben.
Sensor ermöglicht Einblicke in biologische Vorgänge
Einsatzmöglichkeiten für ihren Resonator sehen die Forschenden bei der zukünftigen Detektion der dreidimensionalen Bewegung mit hoher zeitlicher Auflösung und der Charakterisierung der optischen Eigenschaften von biologischen Nanoteilchen, wie zum Beispielen Proteinen, DNA-Origami oder Viren. Der Sensor könnte damit Einblicke in noch nicht verstandene biologische Vorgänge ermöglichen.
Originalpublikation
Larissa Kohler, Matthias Mader, Christian Kern, Martin Wegener, David Hunger: Tracking Brownian motion in three dimensions and characterization of individual nanoparticles using a fiber-based high-finesse microcavity. Nature Communications, 2021. DOI: 10.1038/s41467-021-26719-5
https://www.nature.com/articles/s41467-021-26719-5
Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 9 600 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 23 300 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen. Das KIT ist eine der deutschen Exzellenzuniversitäten.
Dr. Felix Mescoli
Pressereferent
Tel.: +49 721 608 41171
felix.mescoli@kit.edu
https://www.nature.com/articles/s41467-021-26719-5
https://www.kit.edu/kit/pi_2021_101_neuer-sensor-kann-immer-kleinere-nanoteilche...
Handlich und revolutionär: Einen neuartigen Resonator, der immer kleinere Nanoteilchen sichtbar mach ...
Markus Breig, KIT
Markus Breig, KIT
Die Physikerin Larissa Kohler hat den neuen optischen Resonator am KIT entwickelt. (Foto: Markus Bre ...
Markus Breig, KIT
Markus Breig, KIT
Criteria of this press release:
Journalists
Biology, Electrical engineering, Medicine, Physics / astronomy
transregional, national
Research results
German
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).