idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
12/02/2021 10:15

Tierschutzforschungspreis 2021 für Max-Planck-Forscher

Dr. Jeanine Müller-Keuker Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für molekulare Biomedizin

    Auszeichnung für die maschinelle Herstellung und Analyse von menschlichen dreidimensionalen Geweben für die Arzneimittel- und Toxizitätsforschung

    Ohne Versuche an Tieren lassen sich kaum neue Erkenntnisse zur Funktionsweise unseres Gehirns gewinnen. Auch für die Testung neuer Medikamente werden Versuchstiere benötigt. Ein Verfahren, das Jan Bruder und Henrik Renner am Max-Planck-Institut für molekulare Biomedizin in Münster entwickelt haben, soll dazu beitragen, die Anzahl der dafür notwendigen Tierversuche zu verringern. Die Forscher haben aus Vorläufern menschlicher Gehirnzellen dreidimensionale Gewebekulturen gezüchtet, die sich in ihren Kulturschalen zu Stecknadelkopf-großen organähnlichen Gewebeverbänden entwickeln, sogenannten Organoiden. Die beiden Wissenschaftler haben zudem ein automatisiertes Herstellungsverfahren entworfen, mit dem sie die Organoide standardisiert und in hoher Zahl produzieren und analysieren können. Die Organoide können in der Grundlagenforschung zu neurologischen Erkrankungen eingesetzt werden. Außerdem bräuchten Wirkstoffkandidaten, die sich in den Organoiden als unwirksam oder toxisch erweisen, nicht mehr in Tierversuchen untersucht zu werden. Für diese Technologie hat ihnen das Bundesministerium für Ernährung und Landwirtschaft den Tierschutzforschungspreis 2021 verliehen.

    - - -

    Um die Funktionsweise des Gehirns aufklären und Medikamente gegen Erkrankungen wie Alzheimer, Parkinson oder Depression entwickeln zu können, müssen Forschende die Gehirne von Versuchstieren untersuchen. Nervenzellen lassen sich aber auch in zweidimensionalen Zellkulturen von Versuchstieren studieren. Traditionell gedeihen sie dabei in einer Nährlösung und bilden auf dem Plastikboden von Zellkulturgefäßen einen Rasen miteinander verbundener Nervenzellen. Diese flach ausgebreiteten Zellkulturen entsprechen jedoch nur entfernt den Bedingungen in einem Gehirn mit seinen unterschiedlichen Zelltypen und dreidimensionalen Netzwerken. Außerdem stammen die Nervenzellen von Tieren und lassen sich deshalb nur begrenzt mit menschlichen Gehirnzellen vergleichen.

    Ganz anders die Gehirn-Organoide aus Münster. Sie entstehen aus speziellen neuralen Vorläuferzellen, die spontan selbst Gewebestückchen formen und sich in allen drei Raumrichtungen vernetzen können. Diese Zellen können die für die Organoide relevanten Zelltypen besonders schnell und zuverlässig hervorbringen. Durch ihre dreidimensionale Anordnung ahmen sie die charakteristischen Eigenschaften des natürlichen Hirngewebes besser nach als die klassischen Zellkulturen. Noch werden Organoide zum großen Teil einzeln von Hand hergestellt. Dadurch variieren sie individuell sehr stark und besitzen unterschiedliche Eigenschaften. Außerdem lassen sie sich so nicht in großen Stückzahlen produzieren. Beides ist aber notwendig, um sie für die Arzneimittelforschung einsetzen zu können.

    Vollautomatische Erzeugung von Organoiden

    Jan Bruder und Henrik Renner haben ein Verfahren entwickelt, mit dem sie Organoide verschiedener Gehirnregionen tausendfach parallel züchten und für die Wirkstoffentwicklung einsetzbar machen können. Sie haben sich dabei auf das Mittelhirn konzentriert – eine Region, in der unter anderem bei Parkinson viele Nervenzellen absterben. In einem vollautomatischen Verfahren erzeugen die Wissenschaftler mit einem Pipettierroboter beliebig viele Organoide und lassen sie sich bis zur gewünschten zellulären Reife entwickeln. Dank der exakten Standardisierung der Arbeitsschritte und hohen Gleichheit der erzeugten Proben können sie die Auswirkungen von Krankheiten und möglichen Wirkstoffkandidaten oder Toxinen auf die Gewebe genau analysieren.

    Analysen der Forscher zeigen, dass die automatisiert produzierten Mittelhirn-Organoide dem menschlichen Mittelhirn mindestens genauso ähnlich sind wie die von Hand hergestellten Organoide. „Sie beinhalten viele der von Parkinson zuerst geschädigten Dopamin-produzierenden Nervenzellen. Diese sind elektrisch aktiv und erzeugen komplexe, spontane auftretende und zum Teil synchrone Aktivitätsmuster“, erklärt Henrik Renner.

    Auswirkungen von Krankheiten und Giftstoffen

    Durch die hohe Reproduzierbarkeit der Organoide können die Forscher darüber hinaus selbst feinste Auswirkungen von Krankheiten oder Toxinen in Organoiden automatisiert untersuchen. „Wir können mit unseren Mittelhirn-Organoiden das Absterben von dopaminergen Nervenzellen in einem aktiven, menschlichen Gehirn-ähnlichem Gewebe beobachten – dieselben Zellen, die auch bei Parkinson bevorzugt Schaden nehmen. Sie haben großes Potenzial, die nächste Generation eines neuartigen Krankheitsmodells für diese Erkrankung zu werden. Außerdem können wir die Auswirkung von Giften wie zum Beispiel Pestiziden auf die Organoide vollautomatisch bestimmen“, sagt Jan Bruder.

    Die Forscher haben ihre Technologie für einen Einsatz in der pharmazeutischen Industrie konzipiert. „Ich gehe davon aus, dass unser System mittelfristig wenigstens einen Teil der Tierversuche in der neurologischen und pharmakologischen Forschung überflüssig machen wird. Wirkstoffe, die in unserem Versuchssystem toxisch wirken oder nicht ausreichend wirksam sind, könnten frühzeitig aus der Entwicklung ausgeschlossen werden und müssten überhaupt nicht mehr in Tieren getestet werden“, so Bruder.


    Contact for scientific information:

    Dr. Jan Bruder, Gruppenleiter
    jan.bruder@mpi-muenster.mpg.de


    More information:

    https://www.mpi-muenster.mpg.de/673455/20211201-tierschutzforschungspreis


    Images

    Optischer Schnitt durch ein Mittelhirnorganoid nach 25 Tagen robotischer Maturierung zeigt verschiedene typische Zelltypen: blau: Zellkerne; rot: Dopamin-produzierende Neurone; grün: neurale Vorläuferzellen.
    Optischer Schnitt durch ein Mittelhirnorganoid nach 25 Tagen robotischer Maturierung zeigt verschied ...

    MPI f. molekulare Biomedizin/ Henrik Renner, Jan Bruder (Quelle: bioprotocol)

    Links: Äußere Region eines Organoids (rot: Dopamin-produzierende Neurone; grün: neurale Vorläuferzellen). Mitte: gesamtes Organoid (rot: junge Neurone). Rechts: Zentrum des Organoids (rot: junge Neurone; grün: neuronale Stammzellen) (blau: Zellkerne)
    Links: Äußere Region eines Organoids (rot: Dopamin-produzierende Neurone; grün: neurale Vorläuferzel ...

    MPI f. molekulare Biomedizin/ Henrik Renner, Jan Bruder


    Criteria of this press release:
    Journalists, Scientists and scholars, all interested persons
    Biology, Medicine
    transregional, national
    Contests / awards, Research results
    German


     

    Optischer Schnitt durch ein Mittelhirnorganoid nach 25 Tagen robotischer Maturierung zeigt verschiedene typische Zelltypen: blau: Zellkerne; rot: Dopamin-produzierende Neurone; grün: neurale Vorläuferzellen.


    For download

    x

    Links: Äußere Region eines Organoids (rot: Dopamin-produzierende Neurone; grün: neurale Vorläuferzellen). Mitte: gesamtes Organoid (rot: junge Neurone). Rechts: Zentrum des Organoids (rot: junge Neurone; grün: neuronale Stammzellen) (blau: Zellkerne)


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).