idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
12/03/2021 14:49

A delicate interplay between crystal chemistry and superconductivity in noncentrosymmetric materials

Dipl.-Übers. Ingrid Rothe Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Chemische Physik fester Stoffe

    Discovery and analysis of superconductivity in new classes of materials not only broadens fundamental knowledge of this phenomenon, but also brings us closer to unlocking their full application potential. In particular, unconventional superconductors offer new perspective on this century-old concept.

    One of the areas in research on superconducting materials is dedicated to work on noncentrosymmetric systems. The lack of inversion symmetry in these compounds opens up a possibility for unconventional pairing mechanisms. Recently, a new family of cage compounds with noncentrosymmetric cubic crystal structure (I-43d space group) was discovered [1-3]. Seventeen members of this family are based on either lanthanide or actinide elements, with the ground states properties varying from superconductivity to magnetism across the series. All of these compounds host highly-coordinated lanthanide/actinide clusters in a highly complex crystal structure with 212 atoms per unit cell.

    In particular, Th₄Be₃₃Pt₁₆ is the most complex thorium-based noncentrosymmetric superconductor reported to date. Moreover, this material shows superconductivity that is strongly affected by changes in crystallographic properties. As shown in Figure 1, a small change in the value of the lattice parameter (Δa = 0.1 %) produces a very significant change in the critical temperature Tc (ΔTc = 8%). These findings highlight the importance of detailed investigations of chemical and physical properties of lanthanide- and actinide-based materials. By studying these systems, it is possible to expand the understanding of crystal chemistry, while simultaneously providing an insight into which crystallographic parameters impact the physical properties. This work was carried out in the Laboratory of High Safety Standards, which provides an unparalleled environment for solid-state synthesis and characterization.


    Contact for scientific information:

    Eteri.Svanidze@cpfs.mpg.de
    Andreas.Leithe-Jasper@cpfs.mpg.de


    Original publication:

    DOI: 10.1038/s41598-021-01461-6


    Images

    Crystal structure of the R4Be33Pt16 family.
    Crystal structure of the R4Be33Pt16 family.

    MPI CPfS

    The interconnection between complexity and superconducting temperature in thorium-based noncentrosymmetric superconductors.
    The interconnection between complexity and superconducting temperature in thorium-based noncentrosym ...

    MPI CPfS


    Criteria of this press release:
    Journalists, Scientists and scholars, Students
    Chemistry, Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    English


     

    Crystal structure of the R4Be33Pt16 family.


    For download

    x

    The interconnection between complexity and superconducting temperature in thorium-based noncentrosymmetric superconductors.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).