idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
12/06/2021 16:37

Visualising Cell Structures in Three Dimensions in Mere Minutes

Marietta Fuhrmann-Koch Kommunikation und Marketing
Universität Heidelberg

    Viral pathogens like the SARS-CoV-2 coronavirus change the interior structure of the cells they infect. Extremely powerful imaging techniques are needed to visualise these changes, but such methods are very data- and time-intensive. A German-American research team under the direction of Dr Venera Weinhardt from Heidelberg University recently optimised a special X-ray process – known as soft X-ray tomography – to deliver high-resolution three-dimensional images of entire cells and their molecular structure in just a few minutes.

    Press Release
    Heidelberg, 6 December 2021

    Visualising Cell Structures in Three Dimensions in Mere Minutes
    Heidelberg researchers are working on a rapid process for 3D imaging of cells

    Viral pathogens like the SARS-CoV-2 coronavirus change the interior structure of the cells they infect. These changes occur at the level of individual cell components – the organelles – and can provide information on how viral diseases develop. Extremely powerful imaging techniques are needed to visualise them, but such methods are very data- and time-intensive. A German-American research team under the direction of Dr Venera Weinhardt at the Centre for Organismal Studies (COS) of Heidelberg University recently optimised a special X-ray process – known as soft X-ray tomography – to deliver high-resolution three-dimensional images of entire cells and their molecular structure in just a few minutes.

    “Scanning electron microscopes are preferred in cell imaging because they provide extremely sharp nanoscale images,” explains Venera Weinhardt, a post-doc at the COS and the Lawrence Berkeley National Laboratory in Berkeley (USA). “But this technology takes a good week to scan an individual cell. It also generates an enormous amount of data that is daunting to analyse and interpret. Using soft X-ray tomography, we get usable results within five to ten minutes.” High throughput is extremely important for studying numerous cells, according to molecular virologist Prof. Dr Ralf Bartenschlager, whose department at Heidelberg University Hospital is collaborating with Dr Weinhardt on imaging cellular changes associated with viral infections. In tissue, the scientist adds, often only some of the cells are infected. Only those cells provide information on the changes that result directly from the infection. Looking for these cells with a scanning electron microscope, however, is not possible.

    The procedure known as soft X-ray tomography (SXT) has already been used to successfully detect single virus particles – called virions – of different types of viruses and their associated changes in cells. Now the researchers used the technology to study cell cultures infected with SARS-CoV-2 from lung and kidney tissue. Soft X-rays allowed them to image complete cells and their structure in three dimensions in five to ten minutes. The researchers were further able to detect clusters of SARS-CoV-2 particles on cell surfaces as well as identify virus-associated changes in the cell’s interior. Structures were revealed that possibly enable the replication and spread of the virus.

    According to Dr Weinhardt, the team’s success largely hinged on the technology allowing them to study fixed cells, i.e. cells that had been chemically treated to deactivate the virus. Typically, in soft X-ray tomography, like in electron tomography, flat lattice structures are used as holders. When they are tilted, the thickness of the samples can change, making some cell structures appear blurry. “Blind” spots also occur because the flat shape of the holder prevents the cells from being scanned at all angles. Another dilemma is that the samples can adhere to the lattice or spread out, requiring multiple tomograms to visualise the entire cell. “To get around this problem, we switched over to cylindrical thin-wall glass capillaries to hold the samples. During microscopy, the samples can be rotated a full 360 degrees and scanned from all angles,” explains the researcher. The team is now working on further refining sample preparation techniques, automating the analysis of the 3D image data, and developing a laboratory version of a soft X-ray microscope.

    Funding for the research in Heidelberg was provided by the German Research Foundation (DFG), the European Research Council (ERC) and the “Horizon 2020” Framework Programme of the European Union. The results of the research were published in the journal “Cell Reports Methods”.

    Contact:
    Heidelberg University
    Communications and Marketing
    Press Office, phone +49 6221 54-2311
    presse@rektorat.uni-heidelberg.de


    Contact for scientific information:

    Dr Venera Weinhardt
    Centre for Organismal Studies
    Phone +49 6221 54-6497
    venera.weinhardt@cos.uni-heidelberg.de


    Original publication:

    V. Loconte, J.-H. Chen, M. Cortese, A. Ekman, M. A. Le Gros, C. Larabell, R. Bartenschlager, V. Weinhardt: Using soft X-ray tomography for rapid whole-cell quantitative imaging of SARS-CoV-2-infected cells, Cell Reports Methods, Vol. 1, Issue 7, 22 November 2021, 100117, https://doi.org/10.1016/j.crmeth.2021.100117


    More information:

    http://www.cos.uni-heidelberg.de/en Centre for Organismal Studies
    http://www.klinikum.uni-heidelberg.de/zentrum-fuer-infektiologie/molecular-virol... Molecular Virology


    Images

    Human lung epithelium cell 24 hours after SARS-CoV-2 viral infection. Hijacked cellular organelles are labelled with an asterisk.
    Human lung epithelium cell 24 hours after SARS-CoV-2 viral infection. Hijacked cellular organelles a ...

    Venera Weinhardt (COS)


    Criteria of this press release:
    Journalists, Scientists and scholars
    Biology
    transregional, national
    Research results, Scientific Publications
    English


     

    Human lung epithelium cell 24 hours after SARS-CoV-2 viral infection. Hijacked cellular organelles are labelled with an asterisk.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).