Saarbrücker Forscher:innen entwickeln Wirkstoffkandidaten gegen Krankenhauskeim
Die zunehmende Ausbreitung resistenter Keime führt dazu, dass ehemals hochwirksame Antibiotika zur Behandlung von Infektionserkrankungen oftmals nicht mehr erfolgreich eingesetzt werden können. Um dieser Entwicklung entgegenzuwirken, hat das Team um Prof. Anna Hirsch vom Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS) neue Wirkstoffkandidaten entwickelt, die dazu in der Lage sind, einen der wichtigsten Krankenhauskeime unschädlich zu machen. Ihre Ergebnisse haben die Forscher:innen in der Fachzeitschrift Angewandte Chemie veröffentlicht.
Der Krankenhauskeim Pseudomonas aeruginosa verursacht eine Vielzahl von Infektionserkrankungen: von Lungenentzündungen über Wund-, Augen- und Harnwegsinfektionen bis hin zur Sepsis. Besonders durch P. aeruginosa ausgelöste Lungenentzündungen stellen eine große Gefahr für Mukoviszdose- und Covid-19 Patient:innen während der künstlichen Beatmung dar. Verschärft wird die Bedrohung durch diesen Keim dadurch, dass zunehmend Varianten auftreten, welche gegen mehrere der konventionell eingesetzten Antibiotika resistent sind. Derzeit liegen in der EU bei etwa zehn Prozent der Infektionen mit P. aeruginosa Resistenzen gegen drei oder mehr Antibiotikaklassen vor – Tendenz steigend.
Um dem resultierenden Bedarf nach neuen Strategien und Behandlungsmöglichkeiten gerecht zu werden, haben Forscher des HIPS, einem Standort des Helmholtz-Zentrums für Infektionsforschung (HZI) in Zusammenarbeit mit der Universität des Saarlandes, einen erfolgversprechenden Ansatz entwickelt. Hierbei wird eine der wichtigsten „Waffen“ von P. aeruginosa entschärft: Ein Enzym namens LasB, das für den Abbau von menschlichem Gewebe verantwortlich ist und es dem Keim damit ermöglicht, besser den Ort der Infektion zu erreichen und sich dort einzunisten.
Wirkstoffe dieser Art werden auch als „Pathoblocker“ bezeichnet, da sie die Bakterien im Gegensatz zu Antibiotika nicht abtöten, sondern lediglich deren krankmachende Eigenschaften blockieren. Dies bietet den Vorteil, dass für den Menschen ungefährliche Bakterien nicht in Mitleidenschaft gezogen werden und es weniger häufig zur Entstehung von Resistenzen kommt. Im konkreten Fall kommt eine neu entwickelte Klasse von Wirkstoffen zum Einsatz, die direkt an LasB binden und dieses somit inaktivieren. Anna Hirsch, Leiterin der Abteilung Wirkstoffdesign und Optimierung am HIPS, sagt: „Da uns die dreidimensionale Molekülstruktur von LasB aus einer früheren Studie bestens bekannt war, konnten wir unsere Moleküle so entwerfen, dass sie bestmöglich zu ihrem Zielprotein passen und dieses effizient und spezifisch inaktivieren können. Das Ergebnis ist eine Reihe an Wirkstoffkandidaten, die dazu in der Lage sind, LasB 12-mal besser zu binden als bisherige Kandidaten. Das ist ein ausgezeichneter Ausgangspunkt für die weitere Entwicklung hin zum fertigen Medikament.“ Dass die entwickelten Moleküle das Potential haben, den Wirtsorganismus vor dem schädlichen Effekt von LasB zu schützen, zeigen erste Ergebnisse aus einem Modell mit Galleria mellonella-Larven. Kommen die Larven in Kontakt mit LasB, so überleben nur rund zehn Prozent. Unter dem Einfluss der Wirkstoffe aus dem Labor von Anna Hirsch, steigt dieser Wert auf über 60 Prozent.
Neben dem Wirkprinzip der entwickelten Substanzen handelt es sich auch bei deren Optimierung um einen innovativen Ansatz. „Üblicherweise beginnt man beim Design solcher Inhibitoren mit sehr kleinen Molekülen und erweitert diese dann schrittweise.“, sagt die Erstautorin der Studie, Cansu Kaya. „Bei der Analyse des Bindeverhaltens früherer Kandidaten ist uns aufgefallen, dass manchmal zwei dieser Moleküle gleichzeitig an LasB binden. Inspiriert von dieser Beobachtung, haben wir die beiden Fragmente anschließend so miteinander verknüpft, dass ihre räumliche Ausrichtung zueinander nicht beeinflusst wird. Diese als fragment linking bezeichnete Methode ist deutlich komplizierter als konventionelle Ansätze, bietet aber im Erfolgsfall einen deutlich höheren Aktivitätsgewinn in sehr kurzer Zeit. Wir hoffen, dass unsere Methode in Zukunft auch verwendet werden kann, um die Entwicklung von Wirkstoffen gegen andere Krankheiten zu beschleunigen.“
Prof. Rolf Müller, Geschäftsführender Direktor des HIPS und Leiter der Abteilung Mikrobielle Naturstoffe, sieht den entwickelten Ansatz als vielversprechende Ergänzung zur Entwicklung neuer Antibiotika: „Leider ist die Entwicklung neuer Antibiotika sehr langwierig, teuer und wird nur noch von wenigen Pharmafirmen unterstützt. Die entwickelten Substanzen bieten uns einen alternativen Ansatz, um das Problem der antimikrobiellen Resistenz angehen zu können. Da sich resistente Keime auch in Zukunft immer mehr ausbreiten werden, sind solche Wirkstoffkandidaten von unschätzbarem Wert.“
In Folgestudien sollen die beschriebenen Substanzen nun weiterentwickelt und für ihre Anwendung am Menschen optimiert werden. Bei diesem Vorhaben wird Anna Hirsch von der US-amerikanischen Förderorganisation CARB-X unterstützt: Diese fördert die Arbeiten auf diesem Gebiet seit Ende 2020 mit Fördergeldern in Höhe von 1,46 Millionen Euro.
Diese Pressemitteilung finden Sie auch auf unserer Homepage unter dem Link https://www.helmholtz-hzi.de/de/aktuelles/news/news-detail/article/complete/waff...
Helmholtz-Zentrum für Infektionsforschung:
Am Helmholtz-Zentrum für Infektionsforschung (HZI) untersuchen Wissenschaftler die Mechanismen von Infektionen und ihrer Abwehr. Was Bakterien oder Viren zu Krankheitserregern macht: Das zu verstehen soll den Schlüssel zur Entwicklung neuer Medikamente und Impfstoffe liefern. Das HZI ist Mitglied im Deutschen Zentrum für Infektionsforschung (DZIF).Weitere Informationen: https://www.helmholtz-hzi.de
Helmholtz-Institut für Pharmazeutische Forschung Saarland:
Das Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS) in Saarbrücken wurde im Jahr 2009 vom HZI und der Universität des Saarlandes gemeinsam gegründet. Die Forscher suchen hier insbesondere nach neuen Wirkstoffen gegen Infektionskrankheiten, optimieren diese für die Anwendung am Menschen und erforschen, wie diese am besten zu ihrem Wirkort im menschlichen Körper transportiert werden können. https://www.helmholtz-hips.de
Ihr Ansprechpartner am HIPS:
Dr. Yannic Nonnenmacher
PR Manager HIPS
0681 98806-4500
yannic.nonnenmacher@helmholtz-hips.de
Kaya C, Walter I, Yahiaoui S, Sikandar A, Alhayek A, Konstantinović J, Kany A, Haupenthal J, Köhnke J, Hartmann R & Hirsch A: Substrate Inspired Fragment Merging and Growing Affords Efficacious LasB Inhibitors. Angewandte Chemie Int. Ed., 2021, DOI: 10.1002/anie.202112295
Die entwickelten Pathoblocker inaktivieren das Enzym LasB und entwaffnen somit den Krankheitserreger ...
© Alaa Alhayek/HIPS (erstellt mit biorender.com)
Criteria of this press release:
Business and commerce, Journalists, Scientists and scholars
Biology, Chemistry, Medicine
transregional, national
Research results, Scientific Publications
German
Die entwickelten Pathoblocker inaktivieren das Enzym LasB und entwaffnen somit den Krankheitserreger ...
© Alaa Alhayek/HIPS (erstellt mit biorender.com)
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).