idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
01/18/2022 10:00

Deadly spider venom as a basic ingredient of medical applications? Mystery of the Black Widow decoded

Jacobs University Press Office Corporate Communications & Public Relations
Jacobs University Bremen gGmbH

    The black widow snatches its prey with venom. The bite of the spider can also be fatal for humans. Until now, it was unclear how the neurotoxin is structured exactly and how it works in detail. The research groups of Professor Richard Wagner, biophysicist at Jacobs University Bremen, and Professor Christos Gatsogiannis from the Institute of Medical Physics and Biophysics at the Westphalian Wilhelms University Münster, have now deciphered the structure and function of the toxin – also with a view to possible medical applications. The findings of the research groups have been published in the journal Nature Communications in November 2021.

    The black widow uses latrotoxins (LaTXs), a subgroup of neurotoxins, to immobilize or kill its victims. The toxins dock onto specific receptors on the surface of nerve cells and ultimately cause the release of neurotransmitters. Due to the constant influx of calcium ions into the cell, messenger substances are released in large quantities. The result is convulsions.

    This mechanism distinguishes the latrotoxins from all other variants of the pore-forming toxins. Despite extensive studies over the past decades, it was unclear how these toxins are structured and by which mechanisms they exert their effects. Thanks to cryo-electron microscopy (cryo-EM) in the research group of Professor Gatsogiannis, this has changed. With this three-dimensional method, biomolecules can be "photographed" down to atomic resolution.

    In the process, the protein complexes are frozen in liquid ethane at minus 196 degrees Celsius in milliseconds into a thin layer of amorphous ice, a form of solid water. Hundreds of thousands of images are then recorded, showing different views of the protein – and thus revealing the structure of the nerve agent. In addition, Professor Wagner's research group succeeded in clarifying the principle molecular mechanisms of action of latrotoxins in detail with the help of single-molecule electrophysiology (BLM technique). There are only a few laboratories worldwide with the know-how for this method.

    Using these two techniques – the cryo-EM and BLM techniques – the researchers, with the participation of the Max Planck Institute in Dortmund, succeeded in elucidating the first structure of a latrotoxin and characterizing its physiological mechanisms of action. It was shown that the spider toxin also spontaneously inserts itself into the cell surface, where it forms highly selective calcium-release ion channels. "The general structure of LaTX is unique and differs from all previously known toxins in every way," Gatsogiannis said.

    The new findings are fundamental for understanding the molecular mechanism of action of the entire LaTX family and prepare the ground for possible medical applications as well as for the development of an efficient antidote. In addition, research on insect-specific toxins could open up new possibilities for pest control.

    About Jacobs University Bremen:
    Studying in an international community. Obtaining a qualification to work on responsible tasks in a digitized and globalized society. Learning, researching and teaching across academic disciplines and countries. Strengthening people and markets with innovative solutions and advanced training programs. This is what Jacobs University Bremen stands for. Established as a private, English-medium campus university in Germany in 2001, it is continuously achieving top results in national and international university rankings. Its more than 1,600 students come from more than 110 countries with around 80% having relocated to Germany for their studies. Jacobs University’s research projects are funded by the German Research Foundation or the EU Research and Innovation program as well as by globally leading companies.
    For more information: www.jacobs-university.de
    Facebook | Youtube | Twitter | Instagram | Weibo


    Contact for scientific information:

    Professor Richard Wagner, Biophysicist
    Tel.: +49 421 200-3136
    E-Mail: ri.wagner@jacobs-university.de


    Original publication:

    https://www.nature.com/articles/s41467-021-26562-8


    Images

    Professor Richard Wagner, biophysicist at Jacobs University Bremen.
    Professor Richard Wagner, biophysicist at Jacobs University Bremen.

    Jacobs University

    Daniel Blum, PhD Student in workgroup of Prof. Dr. Richard Wagner.
    Daniel Blum, PhD Student in workgroup of Prof. Dr. Richard Wagner.

    Jacobs University


    Criteria of this press release:
    Business and commerce, Journalists, Scientists and scholars, Students, Teachers and pupils, all interested persons
    Biology, Chemistry, Medicine
    transregional, national
    Research results, Scientific Publications
    English


     

    Professor Richard Wagner, biophysicist at Jacobs University Bremen.


    For download

    x

    Daniel Blum, PhD Student in workgroup of Prof. Dr. Richard Wagner.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).