idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
01/26/2022 16:03

Maize and milk proteins can replace fossil fuels and metals in the production of nanostructured surfaces

Ulrika Bergström, press officer at Linnaeus University ulrika.bergstrom@lnu.se Kommunikationsavdelningen / Communications Department
Schwedischer Forschungsrat - The Swedish Research Council

    New research results from Linnaeus University opens for a future with more sustainably produced nanotechnology, where limited natural resources can be replaced with, among other things, maize and milk proteins.

    Nanotechnology can be found almost everywhere in our daily lives, although it is nearly impossible to see. Nanostructures are materials that have been processed at the atomic level to obtain desired material properties. They are used, for instance, in electronics, diagnostics, and as surface treatments for textiles. Nanotechnology has become an indispensable part of modern life.

    Given the wide range of areas of use, it becomes important to develop ecologically sustainable production methods and materials in nanotechnology. The production methods used today often require limited natural resources.

    “Today, nanostructures are produced from many different types of metals and materials derived from fossil fuels”, explains Ian Nicholls, professor of chemistry at Linnaeus University.

    Nicholls and his research colleague Subramanian Suriyanarayanan have developed nanostructured surfaces made from natural raw materials found in maize, milk, and crayfish shells. The study, that was published in the journal Scientific Reports, shows that it is possible to create sustainable solutions from biomaterials.

    Readily available materials
    The researchers studied the usability of three renewable and readily available raw materials: zein (a naturally occurring protein found in maize), casein (a type of milk protein), and chitosan (a substance present in, among other things, crayfish shells). The results showed that readily available biomaterials such as these can be used as raw material for nanostructures.

    A challenge concerning the use of new biomaterials is how to preserve the properties of the materials over time. In order to come up with an answer to this, the researchers chose to store the nanostructures made of zein, casein, and chitosan for six months and then study how their material properties had changed.

    Above all, the maize protein zein demonstrated stable results: After six months, no significant differences could be seen in the quality of the nanostructures, which signals promising properties. However, the results were not as good for the nanostructures that had been produced from casein and chitosan, these did not demonstrate the same good stability.

    More research projects underway
    Nonetheless, the study points to the possibility to replace fossil fuels and metals in nanotechnology in the future. More research projects are underway to continue to study the possibility to use renewable and readily available raw materials.

    “Nanotechnology products are of great benefit to society and it is highly likely that the demand will increase in the future. Therefore, it is very important that these can be produced in a resource-efficient and fossil-free way – which we, through our research, have proved is possible”, Nicholls concludes.

    Learn more about the research on biosensors and nanostructures

    Link to the article Making nanostructured materials from maize, milk and malacostraca
    Read about the research project Mindgap


    Contact for scientific information:

    CONTACT
    Ian Nicholls, Professor, +46 480-44 62 58, ian.nicholls@lnu.se
    Subramanian Suriyanarayanan, Researcher, +46 480-44 64 70, subramanian.suriyanarayanan@lnu.se

    Ulrika Bergström, Senior Press Officer, +46 70-259 36 29, ulrika.bergstrom@lnu.se


    Original publication:

    Making nanostructured materials from maize, milk and malacostraca


    More information:

    https://www.nature.com/articles/s41598-021-04001-4
    https://lnu.se/en/research/searchresearch/research-projects/project-bridging-the...
    https://www.expertsvar.se/wp-content/uploads/2022/01/kukuruz-2-30-1.jpg


    Images

    Criteria of this press release:
    Journalists
    Biology, Environment / ecology, Physics / astronomy
    transregional, national
    Research results
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).