idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
02/24/2022 14:57

Eine neue Ebene der Signalübertragung in Stammzellen

Johann Jarzombek Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für molekulare Physiologie

    Teilen, differenzieren oder sterben? Wann und wo Zellen Entscheidungen treffen, bestimmt ihr Verhalten und ist besonders wichtig für die Stammzellen eines sich entwickelnden Organismus. Dabei hängt die Entscheidungsfindung davon ab, wie Informationen durch Netzwerke von Signalproteinen verarbeitet werden. Die Teams um Christian Schröter vom Max-Planck-Institut für molekulare Physiologie in Dortmund und Luis Morelli vom IBioBa haben nun erstmals gezeigt, dass ERK, ein Schlüsselakteur in der Stammzellsignalgebung, Informationen durch schnelle Aktivitätspulse verarbeitet. Die Dauer des Pulsintervalls könnte Informationen kodieren, die für die Entwicklung von Stammzellkulturen wichtig sind.

    Während ihrer Entwicklung zum späteren Embryo durchlaufen Stammzellen eine Reihe von Entwicklungsschritten. Der Übergang zwischen diesen Schritten wird durch Signalmoleküle gesteuert, die zwischen benachbarten Zellen ausgetauscht werden. Eines der wichtigsten Signale während der frühen Embryogenese bei Säugetieren ist der Fibroblasten-Wachstumsfaktor 4 (FGF4). Wenn er von einer Zelle erkannt wird, wird seine Information von einem Netzwerk von Signalproteinen verarbeitet und in eine zelluläre Reaktion umgewandelt. Die Hauptakteure des Netzwerks, ihre Rolle und ihre Interaktionen sind inzwischen gut bekannt, aber man weiß nur wenig über die Dynamik der Signalübertragung. Doch was bedeutet Dynamik eigentlich, und warum ist sie wichtig?

    Dynamik bestimmt das Zellschicksal
    Im Paradebeispiel für die Bedeutung der Dynamik bei der Signalübertragung lösen zwei verschiedene molekulare Signale unterschiedliche zelluläre Reaktionen aus - Differenzierung und Zellwachstum - obwohl sie dasselbe Signalnetzwerk nutzen. Dies ist möglich, weil die Dynamik, mit der das Signalsystem aktiviert wird, für jedes der beiden molekularen Signale spezifisch ist: Während die eine das System für kurze Zeit aktiviert, was zu Zellwachstum führt, aktiviert die andere das gleiche System für lange Zeit, was zur Differenzierung führt. Die Dynamik eines Signalsystems bestimmt also das Schicksal der Zelle. Viele Studien konnten bisher nur relativ langsame Dynamiken in Stammzellen betrachten, die sich über Stunden entfalten und in allen Zellen gleich sind; schnelle Dynamiken konnten nicht untersucht werden, insbesondere wenn sie nicht in allen Zellen in einer Kulturschale synchron abliefen.

    ERK-Aktivität pulsiert alle sechs bis sieben Minuten
    Die Teams um Christian Schröter und Luis Morelli vom Instituto de Investigacion en Biomedicina de Buenos Aires (IBioBa) waren nun in der Lage, ein besseres Verständnis der schnellen Signaldynamik in Stammzellen zu gewinnen. Indem sie einen Fluoreszenzsensor in lebende Stammzellen einschleusten, konnten die Forschenden die Aktivität des wichtigen Signalproteins ERK in Echtzeit messen. Die ERK-Aktivität ist wichtig für die Umsetzung von molekularen Signalen in eine genetische Antwort und damit auch für die Regulierung der Stammzelldifferenzierung. "Die Messung der ERK-Aktivität in einzelnen Stammzellen auf einer kurzen Zeitskala ist experimentell sehr anspruchsvoll und wurde bisher noch nie auf diese Weise durchgeführt. Zum ersten Mal konnten wir beobachten, dass die ERK-Aktivität alle sechs bis sieben Minuten pulsiert, schneller als ähnliche Signale, die zuvor in anderen Zellsystemen gemessen wurden. In einzelnen Zellen traten die Pulse oft sehr regelmäßig nacheinander auf, aber die Pulsmuster waren zwischen einzelnen Zellen auffallend unterschiedlich", sagt Christian Schröter. Die Forschenden konnten auch beobachten, dass mit steigendem FGF4-Signal die Anzahl der Pulse bei der Aufsummierung über viele Zellen zunimmt, die Dauer der einzelnen Pulse sich jedoch nicht veränderte.

    Interdisziplinärer Ansatz - Interkontinentale Zusammenarbeit
    "Diese Art von Daten und ihre Rolle bei der Zellsignalisierung sind sehr schwer zu interpretieren. Und das ist der Punkt, an dem unsere Expertise zum Tragen kam", sagt Luis Morelli, langjähriger Kooperationspartner und Gruppenleiter am IbioBa, einem Partnerinstitut der Max-Planck-Gesellschaft. "Wir mussten einen neuen theoretischen Ansatz entwickeln, um die Dynamik in Zeitreihen zu beschreiben. Dabei erkannten wir, dass die Dauer des pulsierenden Intervalls Informationen kodieren könnte, da wir sowohl aktive Phasen mit Pulsen als auch Phasen ohne Pulse finden konnten. Wir nennen dieses neue dynamische Merkmal intermittierende Oszillationen".

    "Oszillationen sind ein mehr und mehr anerkanntes Merkmal von Signalsystemen in Zellen. Wir vermuten, dass die intermittierenden Oszillationen, die wir in Stammzellen gefunden haben, wie eine Art Morsecode funktionieren. Dieser könnte Informationen zur Entwicklung der Zellen verschlüsseln. Möglicherweise spielt dabei der Wechsel von Pulsieren zu Stille eine entscheidende Rolle. Die Frage ist nun, was sagt uns die Dynamik über die Organisation der Signalübertragung in Stammzellen? Wie können die Zellen die Oszillationen lesen, und wie beeinflussen sie das Verhalten der Zelle? Ich bin überzeugt, dass eine enge Zusammenarbeit zwischen Zellbiologen und Theoretikern notwendig ist, um eines Tages die Ursprünge und Funktionen dieser neuen Dimension der Stammzellbiologie zu entschlüsseln", sagt Christian Schröter.


    Contact for scientific information:

    Dr. Christian Schröter
    Max-Planck-Institut für molekulare Physiologie
    christian.schroeter@mpi-dortmund.mpg.de


    Original publication:

    Raina D, Fabris F, Morelli LG, Schröter C (2022). Intermittent ERK oscillations downstream of FGF in mouse embryonic stem cells. Development
    https://doi.org/10.1242/dev.199710


    Images

    ERK-Aktivität in Stammzellen. Links: Sensor in Zellen. Rechts: pulsierende Aktivität: hellgrüne Kurven sind Kontrolle, dunkelgrüne Kurven Oszillation. 1 Stern: reguläre Pulse, 2 Sterne: isolierte Pulse, 3 Sterne: pulsierenden und nicht-pulsierenden Phasen
    ERK-Aktivität in Stammzellen. Links: Sensor in Zellen. Rechts: pulsierende Aktivität: hellgrüne Kurv ...

    MPI für molekulare Physiologie


    Criteria of this press release:
    Journalists, Scientists and scholars, Students, Teachers and pupils
    Biology, Medicine
    transregional, national
    Research results
    German


     

    ERK-Aktivität in Stammzellen. Links: Sensor in Zellen. Rechts: pulsierende Aktivität: hellgrüne Kurven sind Kontrolle, dunkelgrüne Kurven Oszillation. 1 Stern: reguläre Pulse, 2 Sterne: isolierte Pulse, 3 Sterne: pulsierenden und nicht-pulsierenden Phasen


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).