idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
03/17/2022 12:11

Magneto-acoustic waves: Around two million euros for information processing with spin and sound

Melanie Löw Universitätskommunikation
Technische Universität Kaiserslautern

    Professor Dr. Mathias Weiler from the Technische Universität Kaiserslautern (TUK) has been awarded a Consolidator Grant by the European Research Council (ERC). He will receive around two million euros over the next five years. Weiler and his team are working on spin waves and new spintronic devices that could significantly accelerate the storage, processing and transmission of information. A major challenge here is the control of magnetic materials with complex spin order. With the funding, Weiler now wants to use surface acoustic waves for this purpose, which have so far been used primarily in our smartphones.

    When processing information, we primarily use the electrical charge of electrons. However, devices are becoming ever smaller and more powerful. Electric current with its high waste heat is reaching its limits here. That's why scientists are working on alternatives, such as the use of spin waves. "Spin describes the intrinsic angular momentum of a quantum particle, for example an electron or neutron," says Professor Dr. Mathias Weiler, who conducts research on applied spin phenomena at TU Kaiserslautern. "It forms the basis for all magnetic phenomena."

    Collective excitations of spins - so-called spin waves - can transport more information than electrons while consuming significantly less energy and generating less waste heat. This makes spin waves interesting for applications. They could be used to develop new spintronic devices that significantly accelerate the processing and storage of information.

    An important role is played by magnetic materials that have complex spin orders and associated special properties. Such complex spin orders are found in antiferromagnets and magnetic skyrmions. "Unlike ferromagnets, which have wide technological applications as permanent magnets, complex magnetic materials cannot be characterized by an easily controllable macroscopic magnetization," Weiler says. "Instead, their complex spin structure is protected by quantum mechanical exchange interaction and topology, so it cannot be easily perturbed by external magnetic fields." This protection, along with natural frequencies that can reach the terahertz range, makes complex spin systems particularly suitable for robust and fast information processing.

    So far, however, no efficient methods exist to control spin waves in these systems. The potential of this class of materials therefore remains largely untapped. This is where the EU-funded project "Magneto-Acoustic Waves in Complex Spin Systems" (MAWiCS) comes in: Mathias Weiler's team aims to combine complex spin systems with surface acoustic waves (SAW). "Surface acoustic waves are widely used in communication technology. They are used, for example, to realize the numerous frequency filters in smartphones," the physicist from Kaiserslautern continues. "We will link this current key technology with next-generation spin-based information technology."

    The physicists take advantage of the fact that SAWs couple very well to these complex spin systems and thus can control them very efficiently. Weiler's group thereby benefits from its long-standing expertise in using SAWs to control ferromagnetic systems. The team will now extend this expertise to antiferromagnets and chiral magnets. "With our experiments, we want to lay the groundwork for these materials to come into use in information processing," Weiler summarizes. "They can enable a new class of information technology."

    The work will take place in the new research building LASE (Laboratory for Advanced Spin Engineering) on the TUK campus. The group's research is integrated into the Rhineland-Palatinate-funded state research center OPTIMAS (Optics and Materials Sciences), the TopDyn research initiative established jointly with the Johannes Gutenberg University Mainz, as well as the priority program SPP 2137 "Skyrmionics: Topological spin phenomena in real space for applications" and the collaborative research center SFB/TRR 173 "Spin+X - Spin in its collective environment", which are funded by the German Research Foundation.

    Contact:
    Professor Dr. Mathias Weiler
    Applied Spin Phenomena / Department of Physics
    Tel.: 0631 205-4099
    E-mail: weiler(at)physik.uni-kl.de


    Contact for scientific information:

    Professor Dr. Mathias Weiler
    Applied Spin Phenomena / Department of Physics
    Tel.: 0631 205-4099
    E-mail: weiler(at)physik.uni-kl.de


    Images

    Professor Dr. Mathias Weiler as been awarded a Consolidator Grant.
    Professor Dr. Mathias Weiler as been awarded a Consolidator Grant.
    Credit: TUK/Koziel


    Criteria of this press release:
    Journalists
    Electrical engineering, Information technology, Physics / astronomy
    transregional, national
    Contests / awards, Research projects
    English


     

    Professor Dr. Mathias Weiler as been awarded a Consolidator Grant.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).