idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
04/04/2022 07:28

Higher blood fats make cells share stress

Svenja Ronge Dezernat 8 - Hochschulkommunikation
Rheinische Friedrich-Wilhelms-Universität Bonn

    Study with participation of the University of Bonn: Increased levels of blood fats in people with type 2 diabetes are more harmful than assumed.

    In patients with metabolic diseases, elevated fat levels in the blood create stress in muscle cells - a reaction to changes outside the cell which damage their structure and function. An international research team led by the University of Leeds and with participation by the University of Bonn has discovered that these stressed-out cells give off a signal which can be passed on to other cells. The signals, known as ceramides, may have a protective benefit in the short-term, because they are part of a mechanism designed to reduce stress in the cell. But in metabolic diseases, which are long term conditions, the signals can kill the cells, make symptoms more severe, and worsen the illness. The study has been published in the journal Nature Communications.

    Increased fat in the blood has long been known to damage tissues and organs, contributing to the development of cardiovascular and metabolic diseases including type 2 diabetes. The condition can be caused by obesity, rates of which have nearly tripled worldwide since 1975. In 2016, there were more than 650 million adults aged 18 and above with obesity.

    In the lab, the research team replicated the blood fat levels observed in humans with metabolic disease by exposing skeletal muscle cells to a fatty acid called palmitate. The cells began to transmit the ceramide signal. When these cells were mixed with others which had not been previously exposed to fats, the researchers found that they communicated with each other, transporting the signal in packages called extracellular vesicles.

    The experiment was reproduced in human volunteers with metabolic diseases and gave comparable results. “The findings provide a completely new angle on how cells respond to stress, with important consequences for our understanding of certain metabolic diseases including obesity,” said Dr. Reinhard Bauer of the Life & Medical Sciences Institute (LIMES) at the University of Bonn. He is a member of the Transdisciplinary Research Area "Life and Health”.

    Novel perspective on cell stress

    His research group works with a mouse model in which ceramide signaling is greatly reduced due to a mutation. When the skeletal muscle cells of the mice were stressed with the palmitic acid, the ceramide signal could no longer be generated and transported into neighboring cells. Thus, the researchers were able to combine and verify data from both the cell-based and human studies.

    Research supervisor Lee Roberts, Professor of Molecular Physiology and Metabolism in the University of Leeds’s School of Medicine, said: “Although this research is at an early stage, our discovery may form the basis of new therapies or therapeutic approaches to prevent the development of cardiovascular and metabolic diseases such as diabetes in people with elevated blood fats in obesity.”

    “This research gives us a novel perspective on how stress develops in the cells of individuals with obesity, and provides new pathways to consider when looking to develop new treatments for metabolic diseases,” said Lea Hänschke, a doctoral student at the LIMES Institute at the University of Bonn. This is highly relevant since obesity is an ever-increasing epidemic and the burden of associated chronic disease such as type 2 diabetes necessitates new treatments.

    Participating institutions:

    The international research team included colleagues from the University of Cambridge, University of Bari, Imperial College and AstraZeneca.


    Original publication:

    Ben D. McNally, Dean F. Ashley, Lea Hänschke, Hélène N. Daou, Nicole T. Watt, Steven A. Murfitt, Amanda D. V. MacCannell, Anna Whitehead, T. Scott Bowen, Francis W. B. Sanders, Michele Vacca, Klaus K. Witte, Graeme R. Davies, Reinhard Bauer, Julian L. Griffin & Lee D. Roberts: Long-chain ceramides are cell non-autonomous signals linking lipotoxicity to endoplasmic reticulum stress in skeletal muscle. Nature Communications; DOI: https://doi.org/10.1038/s41467-022-29363-9


    Images

    Microscopy image showing human muscle cells with nuclei in blue, and stress caused by the ceramide stress signals shown in red.
    Microscopy image showing human muscle cells with nuclei in blue, and stress caused by the ceramide s ...
    Lee Roberts
    © Lee Roberts


    Criteria of this press release:
    Journalists, Scientists and scholars
    Biology, Medicine
    transregional, national
    Research results, Scientific Publications
    English


     

    Microscopy image showing human muscle cells with nuclei in blue, and stress caused by the ceramide stress signals shown in red.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).