idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
05/13/2022 11:04

Structure of key protein for cell division puzzles researchers

Johann Jarzombek Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für molekulare Physiologie

    Human cell division involves hundreds of proteins at its core. Knowing the 3D structure of these proteins is pivotal to understand how our genetic material is duplicated and passed through generations. The groups of Andrea Musacchio and Stefan Raunser at the Max Planck Institute of Molecular Physiology in Dortmund are now able to reveal the first detailed structure of a key protein complex for human cell division known as CCAN. By using cryo-electron microscopy, the researchers show important features of the complex’s 16 components and challenge previous assumptions about how the complex is able to recognize the centromere, a crucial region of chromosomes in cell division.

    At the centre of cell division

    The centromere is a constriction in the chromosome, made of DNA and proteins. Most importantly, the centromere is the dock for the kinetochore, a machinery of about 100 proteins that drives the separation of two identical chromosomes during cell division and their delivery to the daughter cells. Previous research has shown that the kinetochore docks onto the centromere through the CCAN complex: The CCAN interacts with the centromere protein A, the landmark protein of the centromere. CCAN is also responsible for replenishing the centromere protein A once the cell division has taken place. Yet, the details of the interaction between CCAN and the centromere protein A remain elusive. “Understanding how CCAN recognises and binds to the centromere could potentially lead us to build a centromere from scratch”, says Musacchio. The centromere is a major hurdle for synthetic biologists who aim to engineer artificial chromosomes to restore missing functions or introduce new ones in cells.

    Unresolved questions at the core

    Scientists identified the CCAN complex over 15 years ago. “Yet, building up a pipeline to synthesize all proteins in vitro has been a major obstacle”, says Musacchio. After obtaining a first reconstitution of the human CCAN complex in vitro, Musacchio joined forces with Stefan Raunser, also at MPI Dortmund, who applied cryo-electron microscopy on the whole CCAN protein complex.

    In the new publication, the MPI groups have been able to determine the 3D structural details of the human CCAN complex, highlighting its unique features and the implications for an interaction with the centromere protein A. “Contrary to what was expected, this structure does not directly recognise the centromere protein A in the standard configuration”, says Musacchio. The centromere protein A is most commonly packed with DNA and other proteins as a nucleosome, the standard unit of the genetic material. The authors are now suggesting that the centromere protein A may be embedded in the centromere with a different configuration that may facilitate the crucial interaction with CCAN. They plan to identify conditions that could lead to this new configuration and prove their hypothesis.


    Contact for scientific information:

    Prof. Dr. Andrea Musacchio
    Max Planck Institute of Molecular Physiology
    Mechanistic Cell Biology
    Tel.: +49 231 133 2101
    email: andrea.musacchio@mpi-dortmund.mpg.de


    Original publication:

    Pesenti ME, Raisch T, Conti D, Walstein K, Hoffmann I, Vogt D, Prumbaum D, Vetter IR, Raunser S, Musacchio A. Structure of the human inner kinetochore CCAN complex and its significance for human centromere organization. Mol Cell. 2022 May 6:S1097-2765(22)00390-2. doi: 10.1016/j.molcel.2022.04.027


    Images

    Organization of the human CCAN. Left: Scheme of the kinetochore organization with the CCAN subcomplexes binding to the centromere protein A (CENP-A). Right: Model of the surface of the CCAN’s 16 components organized in different subcomplexes.
    Organization of the human CCAN. Left: Scheme of the kinetochore organization with the CCAN subcomple ...

    MPI of Molecular Physiology


    Criteria of this press release:
    Journalists, Scientists and scholars, Students, Teachers and pupils
    Biology, Chemistry
    transregional, national
    Miscellaneous scientific news/publications, Research results
    English


     

    Organization of the human CCAN. Left: Scheme of the kinetochore organization with the CCAN subcomplexes binding to the centromere protein A (CENP-A). Right: Model of the surface of the CCAN’s 16 components organized in different subcomplexes.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).