idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
07/19/2022 10:00

Individual Cells Are Smarter Than Thought

Beat Müller Kommunikation
Universität Zürich

    Humans make decisions based on various sensory information which is integrated into a holistic percept by the brain. But how do single cells make decisions? Much more autonomously than previously thought, as researchers from the University of Zurich have now shown. Cells base their decisions not only on outside signals like growth factors, but also on information they receive from inside the cell. This can even lead to treatment-resistant cancer cells.

    Individual humans make decisions all the time. These decisions often involve integrating a variety of contextual cues to ensure a decision is made that is adequate to the circumstances. The wealth of information required to make decisions is provided by our senses. They perceive unique aspects of our environment, such as visual and auditory information, which our brain subsequently integrates into a holistic percept. This is called multisensory – or multimodal – perception.

    Cells take their own state into account when making decisions

    Single cells are no different than humans in this regard. They constantly make important decisions, such as whether to divide or not. Researchers at the University of Zurich (UZH) therefore extended the concept of contextual, multimodal perception found in humans to individual cells. And surprisingly, they found that single cells make decisions much more autonomously than previously thought. “Adequate decision-making by individual cells uses multimodal perception, allowing cells to integrate outside signals like growth factors with information from inside the cell, such as the number of cellular organelles,” says Lucas Pelkmans, professor at the Department of Molecular Life Sciences at UZH.

    In certain situations, such inside cues can overrule the outside stimuli: e.g. in tumors, where the actual state of particular cells overrides the treatment with anti-proliferative drugs, thus making them treatment-resistant. “Such resistance to drugs is a major problem in the fight against cancer. The solution may come from taking into account the contextual cues that individual cells experience and ultimately altering them,” Pelkmans says.

    Analyzing dozens of proteins in millions of cells at once

    To test if cells decide according to contextual, multimodal perception as humans do, the researchers had to concurrently measure the activity of multiple signaling nodes – the cells’ outside sensors – as well as several potential cues from inside the cell, like the local environment and the number of cellular organelles. All that had to be analyzed in single cells as well as across millions of cells. “To do this, we used ‘4i’, a method developed at UZH, which allows us to simultaneously visualize and quantify up to 80 different proteins and protein modifications in single cells using fluorescence microscopy,” says Bernhard Kramer, first author of the study.

    The researchers found that the variability in the activities of individual sensors across cells is tightly linked to variation in internal cues. For example, the abundance of mitochondria, the cells’ power stations, fundamentally affects how an external stimulus is perceived by a single cell. Furthermore, each sensor integrates different cues from inside the cell. When the researchers evaluated an important decision of a single cell – namely to proliferate or to stay quiescent upon a growth stimulus – they found that the cell’s choice was mediated by the perception of multiple sensors and was predictably modulated by cues of the cell’s internal state.

    Cells decide intelligently

    “For any specific decision of a cell, all outside signals and internal cues have to be viewed in concert. Single cells are thus able to make adequate context-dependent decisions – and are therefore clearly smarter than previously thought,” says PhD candidate Kramer.


    Contact for scientific information:

    Prof. Dr. Lucas Pelkmans
    Department of Molecular Life Sciences
    University of Zurich
    Phone: +41 44 635 31 23
    E-mail: lucas.pelkmans@mls.uzh.ch

    Bernhard A. Kramer
    Department of Molecular Life Sciences
    University of Zurich
    Phone: +41 44 635 31 02
    E-mail: bernhard.kramer@uzh.ch


    Original publication:

    Bernhard A. Kramer, Jacobo S. Del Castillo, Lucas Pelkmans. Multimodal perception links cellular state to decision making in single cells. Science. July 14, 2022. DOI: 10.1126/science.abf4062


    Images

    Criteria of this press release:
    Journalists
    Biology, Medicine
    transregional, national
    Research results
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).