idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Thema Corona

Science Video Project

idw-News App:


Google Play Store

Share on: 
08/11/2022 09:45

Long-term mystery on muscle mechanisms may be solved – can lead to better drugs

Press contact: Ulrika Bergström, Kommunikationsavdelningen / Communications Department
Schwedischer Forschungsrat - The Swedish Research Council

    New knowledge about the very smallest muscle components, myosin and actin, can contribute to more effective treatment methods for heart and muscle diseases. Together with a research group from Canada, researchers at Linnaeus University have come up with answers that have eluded the research community for decades.

    The question concerning what happens at the molecular level in our muscles when they are activated has kept researchers occupied for decades. In our muscles, there are billions of small proteins called myosin and actin. The size of each of them being only one-hundred-thousandth of a millimetre.

    These microscopic units create kinetic energy by converting cell fuel to, among other things, phosphate. However, exactly what this process looks like has been debated for a long time.

    “When some of my colleagues and I wrote a review article on the subject in 2015, we noted that the number of hypotheses seems to be almost as high as the number of researchers”, says Alf Månsson, professor of physiology at Linnaeus University.

    Several new answers
    The new research from Linnaeus University provides a number of answers to what happens at the molecular level in our muscles when they are activated. The study that was recently published in the journal Nature Communications was conducted together with a research group from McGill University in Montreal, Canada.

    “The results are of great potential significance for the treatment of serious diseases where myosin plays a key role. In addition to serious diseases in the heart and body muscles, this applies to the spread of cancer cells to new tumors and to the invasion of human red blood cells by malaria parasites”, Månsson explains.

    More specifically, the researchers have mapped out how phosphate, the substance that is created when our muscles are activated, behave when it is released from the myosin at muscle contractions. The researchers present evidence that phosphate moves in a different way than what was previously thought, and it makes more ‘pauses’ in and on the myosin molecule.

    Requires special microscopes
    Through these new discoveries, the researchers can explain phenomena for which earlier models have provided contradictory results. The achievements were made possible by combining calculation-based computer modelling with experimental studies of individual myosin molecules in a laboratory environment.

    “These molecules are so small that they cannot be seen using regular optical microscopes. However, with the help of atomic force microscopy it is possible to observe an individual myosin molecule in motion”, Månsson continues.

    More effective drugs
    The findings are of significance for the development of future drugs linked to heart and muscle diseases. The question concerning how myosin behave has become a key issue here. Detailed knowledge about the functioning of myosin makes it possible to adapt drugs to this detailed function to give them the desired effect.

    “We hope that our findings will pave the way for new ideas in this respect as well as further fine-tuning of already existing medicines”, Månsson concludes.

    Contact for scientific information:

    Alf Månsson, Professor, +46 70 886 62 43,

    Original publication:

    More information
    The article “Multistep orthophosphate release tunes actomyosin energy transduction” is published in Nature Communications.
    Linnaeus University’s research group The molecular motor and bionano group.

    More information:


    Criteria of this press release:
    transregional, national
    Research results



    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.


    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).


    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).