idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
09/02/2022 10:34

Neu entdeckter Effekt lässt auf Fortschritte in IT und Medizin hoffen

Michael Hallermayer Stabsstelle Kommunikation und Marketing
Universität Augsburg

    Die Erkennung von elektromagnetischen Wellen im sogenannten Terahertz-Bereich bleibt eine echte Herausforderung. Forschende der Universitäten Augsburg und Cambridge haben einen neuen physikalischen Effekt entdeckt, der das ändern dürfte. In einer neuen Studie entwickeln sie nun eine Theorie, die den Mechanismus dahinter erklärt. Ihre Erkenntnisse ermöglichen den Bau kleiner, günstiger und höchst empfindlicher Terahertz-Detektoren. Nutzen ließe sich diese etwa in der medizinischen Diagnostik, bei kontaktlosen Sicherheits-Checks oder auch zur schnelleren drahtlosen Übertragung von Daten. Die Ergebnisse der neuen Theorie sind in der Zeitschrift Physical Review B erschienen.

    Wenn Röntgen- oder UV-Strahlen auf ein metallisches Material fallen, schlagen sie Elektronen aus dem Material heraus. Dieser „photoelektrische Effekt“ kann die Basis für Detektoren bilden, die Anwesenheit von elektromagnetischen Wellen nachweisen kann.

    In etwas abgewandelter Form kommt er auch in den Aufnahme-Chips von Digitalkameras oder in Solarzellen zum Tragen. Diese reagieren auf sichtbares und infrarotes Licht. Seine Energie ist allerdings deutlich geringer als die von UV-Strahlung. Sie reicht daher nicht aus, um Elektronen freizusetzen. Stattdessen kann die Strahlung elektrische Eigenschaften von Halbleiterstrukturen verändern, die normalerweise schlechte Leiter sind. Unter Lichteinstrahlung werden sie dagegen leitend oder können sogar Spannungen erzeugen.

    Terahertz-Wellen sind noch ein Stück energieärmer als sichtbares oder infrarotes Licht. Selbst die Elektronen in Halbleitern lassen sich mit ihnen in der Regel nicht ausreichend anregen. Daher gibt es wenige Detektortypen, die Terahertz-Wellen effektiv nachweisen können. Deshalb forschen Wissenschaftler weiter und suchen nach alternativen physikalischen Prinzipien zum Nachweis von Terahertz-Strahlung.

    „Vor Kurzem haben wir aber zusammen mit Kollegen aus Großbritannien einen neuen Effekt entdeckt, der die Konstruktion hochempfindlicher Detektoren erlaubt“, erklärt Dr. Sergey Mikhailov vom Institut für Physik der Universität Augsburg. „Er basiert auf Halbleiter-Materialien mit einem sogenannten zweidimensionalen Elektronengas – einer dünnen leitenden Schicht, die sich unter der Halbleiter-Oberfläche ausbildet. Unter bestimmten Bedingungen lässt sich mit einer solchen Struktur eine Art von Photoeffekt sogar bei Terahertz-Frequenzen beobachten. Wenn diese Halbleiterstruktur durch elektromagnetische Wellen beleuchtet wird, wird ein Strom in dem zweidimensionalen Elektronengas in der Richtung parallel zur Oberfläche des Halbleiters erzeugt.“

    In der aktuellen Arbeit haben die Forscher eine Theorie dieses planaren photoelektrischen Effekts entwickelt, die den Mechanismus genauer erklärt. Aus ihren Ergebnissen lassen sich verschiedene Voraussagen ableiten. So sollten sich auf der Basis des neuen Effekts Detektoren konstruieren lassen, die für den gesamten Terahertz-Bereich (Strahlung zwischen 0,1 und 10 Terahertz Frequenz mit Wellenlängen zwischen 3 und 0.03 Millimeter) empfindlich sind. „Dies ist ein Bereich, für den jeder neue Detektionsmechanismus von großem Wert ist.“, sagt Mikhailov. Theoretisch sollten sich zudem Detektoren konstruieren lassen, die noch auf extrem kleine Strahlungsintensitäten ansprechen.

    Der neue Effekt könnte in mehreren Anwendungsgebieten eingesetzt werden. So ließen sich mit Terahertz-Strahlen Hautkrebszellen auf einfache Weise erkennen. In Sicherheitsschleusen ließen sich mit ihnen kleinste Mengen von Drogen oder explosivem Material aufspüren. Zudem schwingen Terahertz-Wellen schneller hin und her als die elektromagnetischen Strahlen, die momentan im Mobilfunk eingesetzt werden. Aus diesem Grund lassen sich mit ihnen in derselben Zeit deutlich mehr Informationen übertragen. Die neuen Detektoren könnten also einen Geschwindigkeitsschub für das mobile Internet ermöglichen.

    Die Studie wurde vom EU-Projekt Graphene Core 3, dem britischen EPSRC-Projekt HyperTerahertz, sowie von Trinity College Cambridge unterstützt.


    Contact for scientific information:

    Dr. Sergey Mikhailov
    Institut für Physik
    Universität Augsburg
    Tel.: +49-821-598-3255
    E-Mail: Sergey.Mikhailov@physik.uni-augsburg.de


    Original publication:

    S. A. Mikhailov, W. Michailow, H. E. Beere, and D. A. Ritchie, Theory of the in-plane photoelectric effect in two-dimensional electron systems; Phys. Rev. B, Vol. 106, Issue 7, 2022; DOI: 10.1103/PhysRevB.106.075411


    Images

    Illustration des Bereichs der Terahertz-Wellen
    Illustration des Bereichs der Terahertz-Wellen
    Universität Augburg
    Universität Augburg


    Criteria of this press release:
    Business and commerce, Journalists
    Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Illustration des Bereichs der Terahertz-Wellen


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).