idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
09/21/2022 14:16

Sharper than ever: Physicists from Kiel make molecular vibrations more detectable

Eva Sittig Presse, Kommunikation und Marketing
Christian-Albrechts-Universität zu Kiel

    Although scanning tunnelling microscopes can be used to image individual molecules, their vibrations have so far been difficult to detect. Physicists at Kiel University have now invented a method with which the vibration signals can be amplified by up to a factor of 50. Furthermore, they increased the frequency resolution by far. The new method will improve the understanding of interactions in molecular systems and to further develop simulation methods.

    In molecules, the atoms vibrate with characteristic patterns and frequencies. Vibrations are therefore an important tool for studying molecules and molecular processes such as chemical reactions. Although scanning tunnelling microscopes can be used to image individual molecules, their vibrations have so far been difficult to detect. Physicists at Kiel University (Christian-Albrechts-Universität zu Kiel, CAU) have now invented a method with which the vibration signals can be amplified by up to a factor of 50. Furthermore, they increased the frequency resolution by far. The new method will improve the understanding of interactions in molecular systems and to further develop simulation methods. The research team has now published the results in the journal Physical Review Letters.

    The discovery by Dr. Jan Homberg, Dr. Alexander Weismann and Prof. Dr. Richard Berndt from the Institute of Experimental and Applied Physics, relies on a special quantum mechanical effect, the so-called inelastic tunnelling. Electrons that pass through a molecule on their way from a metal tip to the substrate surface in the scanning tunnelling microscope can release energy to the molecule or take it up from it. This energy exchange occurs in portions determined by the properties of the respective molecule.

    Normally, this energy transfer happens only rarely and is therefore difficult to measure. In order to amplify the measurement signal and simultaneously achieve a high frequency resolution, the team of the CAU used a special property of molecules on superconductors they had previously discovered: suitably arranged, the molecules show a state in the spectra that appears needle-shaped, very high and extremely sharp -- the so-called Yu-Shiba-Rusinov resonance. The experiments were supported by theoretical work of Troels Markussen from the software company Synopsis in Copenhagen.

    The article was highlighted as an Editors' Suggestion.

    Video:
    http://www.youtube.com/watch?v=WspdkWDmOYk
    The animated simulation shows the typical vibration patterns of two lead phthalocyanine molecules (above: top view, bottom: view from the side). The size of the deflections of the atoms is strongly exaggerated for a better recognition.
    © Jan Homberg, Alexander Weismann


    Contact for scientific information:

    Prof. Dr. Richard Berndt
    Surface Physics
    Institute of Experimental and Applied Physics
    +49 431/880-3946
    berndt@physik.uni-kiel.de


    Original publication:

    Resonance-Enhanced Vibrational Spectroscopy of Molecules on a Superconductor. J. Homberg, A. Weismann, T. Markussen, R. Berndt. Phys. Rev. Lett. 129, 116801 (2022). DOI: 10.1103/PhysRevLett.129.116801 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.129.116801


    More information:

    https://www.uni-kiel.de/en/details/news/136-molekuelschwingungen link to the press release
    http://www.kinsis.uni-kiel.de/en Website of KiNSIS (Kiel Nano, Surface and Interface Science) one of the priority research areas of Kiel University


    Images

    In this microscope image the lead phthalocyanine molecules on a superconducting lead surface appear as four-leaf clovers. The vibrations of these molecules were studied with the new method.
    In this microscope image the lead phthalocyanine molecules on a superconducting lead surface appear ...

    © Jan Homberg

    The model shows the molecular arrangement on a lead substrate.
    The model shows the molecular arrangement on a lead substrate.

    © Jan Homberg


    Criteria of this press release:
    Journalists, Scientists and scholars
    Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    English


     

    In this microscope image the lead phthalocyanine molecules on a superconducting lead surface appear as four-leaf clovers. The vibrations of these molecules were studied with the new method.


    For download

    x

    The model shows the molecular arrangement on a lead substrate.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).