idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
10/03/2022 17:00

Künstliches Enzym spaltet Wasser

Robert Emmerich Presse- und Öffentlichkeitsarbeit
Julius-Maximilians-Universität Würzburg

    Auf dem Weg zur sonnenlichtgetriebenen Produktion von Wasserstoff ist ein Fortschritt gelungen. Ein Team aus der Chemie präsentiert einen enzymähnlichen molekularen Katalysator für die Wasseroxidation.

    Die Menschheit steht vor einer zentralen Herausforderung: Sie muss den Übergang zu einer nachhaltigen und kohlendioxidneutralen Energiewirtschaft bewältigen.

    Wasserstoff gilt als vielversprechende Alternative zu fossilen Brennstoffen. Er lässt sich unter Einsatz von elektrischem Strom aus Wasser herstellen. Stammt der Strom aus regenerativen Quellen, spricht man von grünem Wasserstoff. Noch nachhaltiger wäre es aber, könnte man Wasserstoff direkt mit der Energie des Sonnenlichts produzieren.

    In der Natur läuft die lichtgetriebene Wasserspaltung bei der Photosynthese der Pflanzen ab. Diese verwenden dafür einen komplexen molekularen Apparat, das sogenannte Photosystem II. Dessen aktives Zentrum nachzuahmen ist eine vielversprechende Strategie, um eine nachhaltige Produktion von Wasserstoff zu realisieren. Daran arbeitet ein Team von Professor Frank Würthner am Institut für Organische Chemie und dem Zentrum für Nanosystemchemie der Julius-Maximilians-Universität Würzburg (JMU).

    Wasserspaltung ist keine banale Reaktion

    Wasser besteht aus einem Sauerstoff- und zwei Wasserstoffatomen. Der erste Schritt der Wasserspaltung ist eine Herausforderung: Um den Wasserstoff freizusetzen, muss aus zwei Wassermolekülen der Sauerstoff entfernt werden. Dafür ist es zunächst nötig, den beiden Wassermolekülen vier Elektronen und vier Protonen zu entziehen.

    Diese oxidative Reaktion ist nicht banal. Pflanzen nutzen dafür ein komplexes Gebilde als Katalysator, bestehend aus einem Cluster mit vier Mangan-Atomen, über die sich die Elektronen verteilen können.

    Würthners Team hatte in einem ersten Durchbruch eine ähnliche Lösung entwickelt, eine Art „künstliches Enzym“, das den ersten Schritt der Wasserspaltung erledigen kann. Dieser Wasseroxidations-Katalysator, bestehend aus drei miteinander agierenden Ruthenium-Zentren innerhalb eines makrozyklischen Konstrukts, katalysiert erfolgreich den thermodynamisch anspruchsvollen Prozess der Wasserspaltung. Publiziert wurde das 2016 und 2017 in den Journalen Nature Chemistry und Energy & Environmental Science.

    Zum Erfolg mit einer künstlichen Tasche

    Nun ist es den Chemikerinnen und Chemikern der JMU gelungen, die anspruchsvolle Reaktion mit einem einzigen Ruthenium-Zentrum effizient ablaufen zu lassen. Dabei wurden sogar ähnlich hohe katalytische Aktivitäten wie im natürlichen Vorbild erreicht, dem Photosyntheseapparat der Pflanzen.

    „Möglich wurde dieser Erfolg, weil unser Doktorand Niklas Noll eine künstliche Tasche um den Ruthenium-Katalysator geschaffen hat. Darin werden die Wassermoleküle für den gewünschten protonengekoppelten Elektronentransfer vor dem Ruthenium-Zentrum in einer genau definierten Anordnung arrangiert, ähnlich wie es in Enzymen geschieht“, sagt Frank Würthner.

    Publikation in Nature Catalysis

    Die JMU-Gruppe präsentiert die Details ihres neuartigen Konzepts nun im Fachjournal Nature Catalysis. Das Team aus Niklas Noll, Ana-Maria Krause, Florian Beuerle und Frank Würthner ist davon überzeugt, dass sich dieses Prinzip auch zur Verbesserung anderer katalytischer Prozesse eignet.

    Das langfristige Ziel der Würzburger Gruppe ist es, den Wasseroxidations-Katalysator in ein künstliches Bauteil einzubauen, das mit Hilfe von Sonnenlicht Wasser in seine beiden Bestandteile Wasserstoff und Sauerstoff zerlegt. Das wird noch seine Zeit dauern, denn dafür muss der Katalysator mit weiteren Komponenten zu einem funktionierenden Gesamtsystem gekoppelt werden – mit lichtsammelnden Farbstoffen und mit sogenannten Reduktionskatalysatoren.

    Förderer

    Der Europäische Forschungsrat (European Research Council, ERC) hat die beschriebenen Arbeiten im Rahmen eines ERC Advanced Grant für Frank Würthner gefördert (grant agreement No. 787937). Weitere Fördermittel stammen vom Bayerischen Wissenschaftsministerium im Rahmen des Forschungsnetzwerks „Solar Technologies go Hybrid“.


    Contact for scientific information:

    Prof. Dr. Frank Würthner, wuerthner@uni-wuerzburg.de


    Original publication:

    Enzyme-like water preorganization in a synthetic molecular cleft for homogeneous water oxidation catalysis. Nature Catalysis, 3. Oktober 2022, DOI: 10.1038/s41929-022-00843-x


    Images

    Enzym-ähnliche Wasserorganisation vor einem Ruthenium-Wasseroxidations-Katalysator.
    Enzym-ähnliche Wasserorganisation vor einem Ruthenium-Wasseroxidations-Katalysator.
    Team Wuerthner
    Universität Würzburg


    Criteria of this press release:
    Journalists, all interested persons
    Chemistry, Energy, Environment / ecology
    transregional, national
    Research results, Scientific Publications
    German


     

    Enzym-ähnliche Wasserorganisation vor einem Ruthenium-Wasseroxidations-Katalysator.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).