idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
10/06/2022 12:54

Neues Forschungsfeld: Kristallspuren in fossilen Blättern

Svenja Ronge Dezernat 8 - Hochschulkommunikation
Rheinische Friedrich-Wilhelms-Universität Bonn

    In fossilen Blättern sind unter dem Mikroskop oft rätselhafte Strukturen sichtbar. Forschende der Universität Bonn haben nun erstmals zeigen können, dass sie von Kalziumoxalat-Kristallen stammen. Ihre Entdeckung erleichtert einerseits die Bestimmung der uralten pflanzlichen Überreste. Sie liefert aber auch Antworten darauf, wie die Fähigkeit entstanden ist, derartige Kristalle zu bilden, und welche Funktion sie vermutlich übernehmen. Die Ergebnisse sind jetzt in der Zeitschrift Nature Scientific Reports erschienen.

    Die Fossilprobe Ro-59.9 ist mit mikroskopisch kleinen Höhlungen übersät. Manche von ihnen sehen so aus, als hätten in ihnen einst winzige Himbeeren geschlummert, jede von ihnen gerade einmal zwei hundertstel Millimeter groß. Das versteinerte Blatt stammt von der Fossillagerstätte Rott in der Nähe von Bonn und ist mehr als 20 Millionen Jahre alt. Zu welcher Pflanzenart es gehört, lässt sich momentan nicht sagen.

    Vielleicht ändert sich das bald. Denn Lage und Form der Vertiefungen sind wie eine Art Fingerabdruck: sie lassen sich für die Bestimmung fossiler Pflanzenreste nutzen. „Bislang wusste man nicht, wie diese Höhlungen entstanden sind“, erklärt Mahdieh Malekhosseini vom Institut für Geowissenschaften der Universität Bonn. „Man hat beispielsweise geglaubt, dass sie von Algen oder von Pollen anderer Pflanzen stammen, die im Zuge der Fossilisation irgendwie auf das Blatt geraten sind. Doch nach Analyse von Hunderten dieser Strukturen können wir das ausschließen. Stattdessen konnten wir zeigen, dass Kalziumoxalat-Kristalle für die Vertiefungen verantwortlich sind.“

    Mikrolinsen für eine bessere Photosynthese?

    Kalziumoxalat wird von sehr vielen lebenden Pflanzen gebildet; es gilt als eines der häufigsten Biomineralien. Welche Funktionen es erfüllt, ist noch nicht abschließend geklärt. Man vermutet aber, dass die Kristalle als Kalzium-Speicher dienen. Da sie zwar im Blatt gebildet werden, bei ihrem Wachstum aber oft die Blattoberfläche durchdringen, wehren sie zudem vermutlich Schädlinge ab. „Viele Insekten haben eine Abneigung gegen Kalziumoxalat - sie laufen nicht gerne darauf“, erklärt Prof. Dr. Jes Rust, der die Studie betreut hat. „Manche Pflanzen scheinen die Kristalle zudem als Mikrolinsen einzusetzen, um das Sonnenlicht effizienter für die Photosynthese nutzen zu können.“

    Die Kristalle sind sehr säureempfindlich. Bei der Fossilisation lösen sie sich daher auf und lassen sich in den Millionen Jahre alten Funden dann nicht mehr nachweisen. Oft bleiben jedoch an den Stellen, wo sie gesessen haben (in der Biologie spricht man von „Drusen“), Abdrücke zurück. Mitunter sammeln sich in diesen Vertiefungen auch organisches Material oder andere Mineralien an, die dann wie winzige Kügelchen in dem fossilen Blatt sitzen.

    „Wir haben die Mikrostruktur der Vertiefungen und ihre Verteilung auf fossilen Blättern untersucht, deren Artzugehörigkeit wir kannten“, erklärt Malekhosseini. „Zusätzlich haben wir uns Kalziumoxalat-Kristalle in den Blättern heutiger Pflanzen angesehen. Dabei haben wir bei nahe verwandten Arten deutliche Parallelen festgestellt. So ähneln die Kristallabdrücke in einem fossilen Ginkgo-Blatt in Verteilung und Struktur stark den Kalziumoxalat-Ablagerungen eines heutigen Ginkgos.“

    Wichtige Einblicke in die Evolution

    Von den Fossilien nacktsamiger Pflanzen wie Tannen oder Kiefern wusste man bereits, dass sie mitunter Abdrücke von Kalziumoxalat-Kristallen aufweisen. Von Bedecktsamern – das sind die meisten Blumen und Laubbäume – war das jedoch nicht bekannt. „Das ist ein völlig neues Forschungsfeld“, erklärt Jes Rust. „Wir wollen nun unter anderem untersuchen, wie sich die Fähigkeit, Kalziumoxalatkristalle zu bilden, im Laufe der Evolution entwickelt hat.“ Dabei möchten sich die Forschenden auf Zeiten konzentrieren, in denen sich die Umweltbedingungen rasch geändert haben – etwa die Temperatur oder die Intensität der UV-Strahlung. „Wenn sich nach solchen Einschnitten auch die Verteilung der Drusen verändert, dann können wir daraus Rückschlüsse auf die biologische Funktion der Kristalle ziehen“, sagt Rust.

    Förderung:
    Die Studie wurde durch die Deutsche Forschungsgemeinschaft (DFG) gefördert.


    Contact for scientific information:

    Prof. Dr. Jes Rust
    Paläontologische Abteilung, Institut für Geowissenschaften
    Universität Bonn
    Telefon: +49 228 734842
    E-Mail: jrust@uni-bonn.de

    Madieh Malekhosseini
    Paläontologische Abteilung, Institut für Geowissenschaften
    Universität Bonn
    Telefon: +49 228 734843
    E-Mail: s6mhmale@uni-bonn.de


    Original publication:

    Malekhosseini, M., Ensikat, HJ., McCoy, V.E. et al. Traces of calcium oxalate biomineralization in fossil leaves from late Oligocene maar deposits from Germany. Scientific Reports; https://doi.org/10.1038/s41598-022-20144-4


    Images

    In lebenden Pflanzen können Kalziumoxalat-Kristalle unter dem Mikroskop bizarre Formen annehmen (v. links: Hainbuche, Knopfmangrove, australische Brennnessel)
    In lebenden Pflanzen können Kalziumoxalat-Kristalle unter dem Mikroskop bizarre Formen annehmen (v. ...
    Madieh Malekhosseini
    © Madieh Malekhosseini / Universität Bonn

    Das fossile Blatt einer Eiche (Quercus neriifolia, oben) zeigt braune rundliche Auflagerungen. Sie ähneln den Kalziumoxalat-Kristallen auf heutigen Eichenblättern (Quercus variabilis, unten).
    Das fossile Blatt einer Eiche (Quercus neriifolia, oben) zeigt braune rundliche Auflagerungen. Sie ä ...
    Madieh Malekhosseini
    © Madieh Malekhosseini / Universität Bonn


    Criteria of this press release:
    Journalists, Scientists and scholars
    Biology, Environment / ecology, Geosciences
    transregional, national
    Research results, Scientific Publications
    German


     

    In lebenden Pflanzen können Kalziumoxalat-Kristalle unter dem Mikroskop bizarre Formen annehmen (v. links: Hainbuche, Knopfmangrove, australische Brennnessel)


    For download

    x

    Das fossile Blatt einer Eiche (Quercus neriifolia, oben) zeigt braune rundliche Auflagerungen. Sie ähneln den Kalziumoxalat-Kristallen auf heutigen Eichenblättern (Quercus variabilis, unten).


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).