Helmholtz Munich researchers identify a novel mechanism to modify glucagon receptor signaling outcomes by altering its intracellular localization.
A group of researchers from the Helmholtz Munich Institute for Diabetes and Cancer (IDC) have unraveled a new strategy to alter glucagon receptor signaling in the liver by changing its intracellular trafficking. Glucagon is a peptide hormone, that is responsible for glucose balance and thus the regulation of blood glucose levels. The novel approach offers therapeutic potential for the treatment of type 2 diabetes by uncoupling glucagon’s glucose and lipid metabolism-related effects.
During fasting, the hormone glucagon circulates through the body to initiate the release and breakdown of stored glucose and lipids from the liver to provide energy. Whether and how the usage of the two energy sources (glucose and lipids) can be activated independently was not known to date. A study by Revathi Sekar, Karsten Motzler and colleagues now identified that depleting the protein Vps37a from the liver alters the localization of the glucagon receptor within the cell, thereby allowing distinct activation of glucose metabolism on intracellular membranes without affecting lipids.
Vps37a controls transport of the glucagon receptor through the cell
The liver is the main organ required for maintaining balanced blood glucose levels during fasting by releasing stored glucose upon external signals, such as glucagon. In type 2 diabetes, however, this pathway becomes overactivated, leading to glucose production from the liver despite already high blood glucose levels. This condition of too high glucose levels in the blood is called hyperglycemia. Pharmacological inhibition of glucagon action in the liver has been proven to be challenging, as glucagon is not only regulating glucose production but also mediating liver lipid breakdown. Therefore, blocking glucagon action bears lipid accumulation in the liver as negative side effect. The team of researchers led by PD Dr. Anja Zeigerer, group leader at the IDC, has now found a possible way to disconnect the two pathways, by interfering with the intracellular location and signaling pathways of glucagon receptor, thereby reviving glucagon antagonism as potential treatment for type 2 diabetes.
Need for novel treatment options
Obesity and associated type 2 diabetes prevalences are strongly increasing. However, as not every patient is responding equally well to already existing therapies, more treatment options are required. The study of first authors Revathi Sekar and Karsten Motzler and colleagues expands the current treatment horizon by offering an elegant way to make use of effective blood glucose reduction through glucagon inhibition without lipid-related side effects.
PD Dr. Anja Zeigerer, anja.zeigerer(at)helmholtz-muenchen.de
Sekar, Motzler et al. (2022): Vps37a Regulates Hepatic Glucose Production by Controlling Glucagon Receptor Localization to Endosomes, Cell Metabolism.
Stained liver cells
Karsten Motzler
Helmholtz Munich/Karsten Motzler
Criteria of this press release:
Journalists, Scientists and scholars
Biology, Medicine
transregional, national
Research results, Scientific Publications
English
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).