idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
10/24/2022 16:54

Born to survive – How human neurons manage to live a century

Torsten Lauer Referat Kommunikation und Medien
Zentralinstitut für Seelische Gesundheit

    Researchers at the Hector Institute for Translational Brain Research (HITBR) at the Central Institute of Mental Health (CIMH) investigate molecular networks resulting in human neuronal longevity.

    Essentially all human tissues and organs have the capacity to heal, to renew cells which got damaged or killed by harmful insults. In this context, the human brain behaves fundamentally different. The vast majority of nerve cells are created before birth and the regenerative capacity of the postnatal human brain is limited to a very few regions. As a consequence, the average age of neurons in adults is much higher than that from any other cell type of the human body. But how do human neurons protect themselves from accidental cell death and maintain a high level of functionality throughout a human's lifespan?

    Neuronal resilience

    The team from the Hector Institute for Translational Brain Research (HITBR) at the Central Institute of Mental Health (CIMH) in Mannheim/Germany has now investigated cellular adaptations in human neurons which guarantee neuronal resilience. They used human induced pluripotent stem cells (iPS cells) to generate human neurons in the culture dish which they matured over time, by that generating a developmental model of the brain where they could directly compare young, newborn neurons to their older, more mature counterparts. The study has now been published in the journal ‘Cell Death & Disease’.

    ‘If cells get stressed or harmed, they normally try to adopt to these conditions, by for instance activating reactive repair programs. At a certain degree of damage, a cell death program, called apoptosis, is activated to eliminate the harmed cell or tissue. This programmed cell death is controlled tightly by several molecular pathways’, explains Prof. Philipp Koch, lead author of the study and Head of the HITBR. ‘We found that the threshold for entering cell death is particularly high in human neurons’.

    Complex and redundant preemptive strategies against stress and cell death

    Indeed, the researchers in Mannheim showed that once human neurons mature they get endowed with complex and redundant preemptive strategies to protect against stress and cell death. Among others, major components of the cell death machinery such as Caspases are strongly downregulated or shut off completely while protective pathways such as antiapoptotic Bcl-2 family proteins of inhibitors of apoptosis proteins (IAPs) are upregulated. ‘It seems that the brain developed a very elaborate, complex and complementary network to protect against cell death, likely an evolutionary adaptation to its reduced regenerative capacity. These safeguarding mechanisms in mature neurons may also in part explain why most neurodegenerative diseases are usually fend off for many decades and only tend to occur with advanced age. Manifestation of neurodegenerative diseases might be the result of many years of accumulated cell stress and damage in combination with a weakening of the maturity-dependent protective mechanisms’, says Koch.


    Original publication:

    Wilkens, R., Hoffrichter, A., Kleinsimlinghaus, K. et al. Diverse maturity-dependent and complementary anti-apoptotic brakes safeguard human iPSC-derived neurons from cell death. Cell Death Dis 13, 887 (2022). https://doi.org/10.1038/s41419-022-05340-4


    Images

    Criteria of this press release:
    Journalists
    Biology, Medicine
    transregional, national
    Research results, Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).