idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
10/27/2022 15:12

Sticking together without stickiness: Enzymatic reactions create micro-environments to organize cellular processes

Dr. Manuel Maidorn Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Dynamik und Selbstorganisation

    Inside cells, molecular droplets form defined compartments for chemical reactions. Not only sticky interactions between molecules, but also dynamic reactions can form such droplets, as it was found by researchers from the Max Planck Institute for Dynamics and Self-Organization (MPI-DS) and the University of Oxford. They revealed a new regulatory mechanism by which life controls and organizes itself.

    Traditionally, cellular organelles defined by a membrane have been considered the functional units of a cell. In recent years, it was shown that also molecular droplets formed inside the cell provide a micro-environment for important reactions. Such droplets are not enclosed by a membrane, and arise from phase separation. Hence, they form dynamically and can be regulated according to the needs of the cell.

    Nonequilibrium drives can induce droplet formation

    In the department of Living Matter Physics, managing director Ramin Golestanian and coworkers aim to reveal the organizational principles of living matter. “The formation of droplets in cells so far was ascribed to attractive, sticky interactions between molecules – similar to how droplets form in non-living, equilibrium systems, such as droplets of oil in a vinaigrette,” explains Jaime Agudo-Canalejo, group leader at the MPI-DS. “We now found that the nonequilibrium drive provided by enzymatic reactions can cause the formation of enzyme-rich droplets, even without any stickiness. Instead, the enzymes are pushed against each other by the chemical fluxes they create” he continues.

    The researchers explored this novel mechanism by formulating a model in which the effect of a multicomponent enzymatic reaction on the micro-environment is described. They also considered the underlying feedback mechanism due to which the induced phase separation can in turn affect the initial enzymatic reaction. “When the enzymatic activity gets too intense, phase separation occurs and acts to reduce it, providing a new form of autoregulation”, says Matthew Cotton, first author of the study. This complex interplay of molecular interactions can provide a dynamic environment for cellular processes. Hence, the model adds another piece to the complex puzzle of how life is able to organize itself.


    Original publication:

    https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.129.158101


    More information:

    https://www.ds.mpg.de/3977613/221027_Golestanian_phase_separation


    Images

    Enzymes can cause a phase separation of a mixture
    Enzymes can cause a phase separation of a mixture


    Criteria of this press release:
    Journalists, Scientists and scholars
    Biology, Physics / astronomy
    transregional, national
    Research results
    English


     

    Enzymes can cause a phase separation of a mixture


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).