idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project

idw-News App:


Google Play Store

Share on: 
10/27/2022 17:22

Node-centric expression models (NCEMs): Graph-neural networks reveal communication between cells

Céline Gravot-Schüppel Kommunikation
Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH)

    How do single cells communicate in a tissue? How can these interactions be modeled, while retaining information of spatial context? Researchers around Fabian Theis from Helmholtz Munich Computational Health Center and Technical University of Munich (TUM) have generated a new method to represent cell communication: the node-centric expression models (NCEM). These models are based on graph neural networks and helps to uncover the effects of cell tissue niche composition on gene expression without loss of spatial information.

    Cells interact in various different ways and on multiple length-scales. The interaction of a cell with its tissue niche can be described through cell communication events. To understand these events, researchers around the world create models, based on different strategies. The knowledge is crucial to understand and identify emerging phenomena in tissue microenvironments, such as genetic changes in a tumor. The issue: many of the models are based on dissociated cells, meaning that the cells are separated to individual cells when being analyzed and are no longer integrated in their natural environment. Other models are limited to receptor-ligand signaling, a certain type of communication between cells. These models therefore ignore the spatial proximity of a group of cells (a niche) in their natural tissue environment. Researchers around Fabian Theis from the Computational Health Center at Helmholtz Munich and Technical University of Munich (TUM) have now developed a new method, that defines the complexity and improves the understanding of cell communication: the node-centric expression models (NCEM).

    A flexible framework

    The particularity of the newly generated model: NCEM is a computational method based on graph neural networks, which combine transcriptomic variance attribution and cell communication modeling in a single model of tissue niches. The model is therefore able to predict a cell’s gene expression profile based on the presence of surrounding cell types. In addition, it estimates the effect of a tissue niche composition on gene expression in an unbiased manner from spatial molecular profiling data.

    In their model, the researchers developed a flexible framework to explain gene expression variations observable in spatial transcriptomics, a technology providing spatially-resolved gene expression information. Gene expression variations can then be associated to known molecular processes associated with cell communication events. They showed that NCEMs robustly identify cell-cell dependencies across different spatial transcriptomics technologies and at length scales that are characteristic for known communication mechanisms. With this method, first authors David Fischer and Anna Schaar were thereby able to recover signatures of molecular processes, that are known to underlie cell communication.

    A novel way to identify cell communication

    The framework constraints communication events to cells that are proximal in space. The identified dependencies are not limited to ligand-receptor-based communication but can also explain, for example, physical interactions or metabolite exchange.

    NCEM is a flexible computational method that can be extended to more complex data sets, as for example 3D spatial transcriptomics data and higher-throughput data. It therefore provides a flexible toolset for the analysis of cell-cell-communication in space. The novel methodology complements recent efforts on characterizing gene expression in individual cells in single-cell “atlas” projects by accounting in this particular case for the tissue niche.

    About the scientists:
    Prof Dr Dr Fabian Theis, Director of Helmholtz Munich, Computational Health Center; Professor of Mathematical Modelling of Biological Systems at the Technical University of Munich (TUM), TUM School of Life Sciences Weihenstephan, TUM School of Computation, Information and Technology.

    Contact for scientific information:

    Prof Dr Dr Fabian Theis,

    Original publication:

    Fischer and Schaar et al. (2022). Modeling intercellular communication in tissues using spatial graphs of cells, Nature Biotechnology, 10.1038/s41587-022-01467-z


    Criteria of this press release:
    Scientists and scholars
    Biology, Medicine
    transregional, national
    Research results, Scientific Publications



    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.


    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).


    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).