idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
10/31/2022 17:00

Ultra-cold mini twisters

Dr. Christian Flatz Büro für Öffentlichkeitsarbeit
Universität Innsbruck

    A team of quantum physicists from Innsbruck, Austria, led by three-time ERC laureate Francesca Ferlaino has established a new method to observe vortices in dipolar quantum gases. These quantum vortices are considered a strong indication of superfluidity, the frictionless flow of a quantum gas, and have now been experimentally detected for the first time in dipolar gases.

    Vortices are ubiquitous in nature: Whirling up water can create swirls. When the atmosphere is stirred up, huge tornadoes can form. This is also the case in the quantum world, except that there many identical vortices are being formed simultaneously - the vortex is quantized. In many quantum gases, such quantized vortices have already been demonstrated. “This is interesting because such vortices are a clear indication of the frictionless flow of a quantum gas - the so-called superfluidity,” says Francesca Ferlaino from the Department of Experimental Physics at the University of Innsbruck and the Institute of Quantum Optics and Quantum Information at the Austrian Academy of Sciences.

    Ferlaino and her team are researching quantum gases made of strongly magnetic elements. For such dipolar quantum gases, in which atoms are highly connected to each other, quantum vortices could not be demonstrated so far. Scientists have developed a new method: “We use the directionality of our quantum gas of dysprosium, whose atoms behave like many small magnets, to stir the gas,” explains Manfred Mark from Francesca Ferlaino's team. To do this, the scientists apply a magnetic field to their quantum gas in such a way that this initially round, pancake-shaped gas becomes elliptically deformed due to magnetostriction. This idea, as simple as it is powerful, originated from a theoretical proposal a few years ago by the Newcastle University theoretical team, led by Nick Parker and of which Thomas Bland, the paper's second author, was a member. “By rotating the magnetic field, we can rotate the quantum gas,” explains Lauritz Klaus, first author of the current paper. “If it spins fast enough, then small vortices form in the quantum gas. This is how the gas tries to balance the angular momentum.” At sufficiently high rotational speeds, peculiar stripes of vortices form along the magnetic field. These are a special characteristic of dipolar quantum gases and have now been observed for the first time at the University of Innsbruck, Austria.

    The new method, now presented in Nature Physics, will be used to study superfluidity in supersolid states in which quantum matter is simultaneously solid and liquid. “It is indeed still a major open question the degree of superfluid character in the newly discovered supersolid states, and this question remains still very little studied today.”

    The work was done in cooperation with Giacomo Lamporesi from the University of Trento, Italy, and the theorist Russell Bisset from the University of Innsbruck, and was financially supported by the European Research Council ERC, the Austrian Science Fund FWF and the Austrian Academy of Sciences ÖAW, among others.


    Contact for scientific information:

    Francesca Ferlaino
    Department of Experimental Physics
    University of Innsbruck
    p +43 512 507 52440
    e francesca.ferlaino@uibk.ac.at
    w http://www.erbium.at


    Original publication:

    Observation of vortices and vortex stripes in a dipolar condensate. Lauritz Klaus, Thomas Bland, Elena Poli, Claudia Politi, Giacomo Lamporesi, Eva Casotti, Russell N. Bisset, Manfred J. Mark, and Francesca Ferlaino. Nature Physics 2022
    DOI: 10.1038/s41567-022-01793-8 [arXiv: 2206.12265]
    https://www.nature.com/articles/s41567-022-01793-8
    https://arxiv.org/abs/2206.12265


    Images

    Illustration of the density distribution of a rotating dipolar Bose-Einstein-Condensate (dBEC) exhibiting quantized vortices based on simulation data from the paper.
    Illustration of the density distribution of a rotating dipolar Bose-Einstein-Condensate (dBEC) exhib ...

    Ella Maru Studio


    Criteria of this press release:
    Journalists, all interested persons
    Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    English


     

    Illustration of the density distribution of a rotating dipolar Bose-Einstein-Condensate (dBEC) exhibiting quantized vortices based on simulation data from the paper.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).