idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
11/03/2022 12:03

Simuliertes Gehirn-Modell erstmals zum Sehen gebracht

Mag. Susanne Eigner Kommunikation und Marketing
Technische Universität Graz

    Forscher der TU Graz haben erstmals auf einem detaillierten Modell des Gehirns der Maus die Funktion des Sehens nachgebildet. Bisher konnten Gehirn-Strukturen zwar modelliert werden, es war aber nicht möglich, gezielte Funktionen auszuführen.

    „Das bahnbrechende an unserem neuesten Modell ist, dass wir unsere Gehirn-Simulation erstmals bestimmte Funktionen – in unserem Fall Sehen – ausführen lassen können“, erklärt TU Graz-Neuroinformatiker Wolfgang Maass, der gemeinsam mit seinen PostDocs Guozhang Chen und Franz Scherr gerade das wissenschaftliche Paper „A data-based large-scale model for primary isual cortex enables brain-like robust and versatile visual processing“ veröffentlicht hat. Als Ergebnis ihrer Arbeit erwarten sich die Forschenden nun eine neue wissenschaftliche Methode, die künftig in der Forschung zum Einsatz kommt.

    Zentrale Funktion in künstlichen neuronalen Netzwerken

    Die Sehfunktion haben die Forschenden deswegen als Forschungsgegenstand ausgewählt, weil sie eine der zentralen Funktionen künstlicher Intelligenz ist – etwa im autonomen Fahren oder der Bildverarbeitung müssen die Algorithmen die mittels Sensoren erfassten Daten über ihre Umgebung interpretieren und aus ihnen lernen. Die Arbeit des TU Graz-Teams baut auf jahrzehntelangen Studien des renommierten Allen Institute for Brain Science in Seattle auf, das sich wissenschaftlich unter anderem der Entschlüsselung des visuellen Cortex von Mäusen verschrieben hat. „Wir haben diese Daten in ein simuliertes Netzwerk von biologischen Neurone – also in ein Computer-Modell von einem Teil des Gehirns – übersetzt und konnten mit diesem biologischen Modell die Sehfunktion nachbilden“, so Maass. Das so simulierte neuronale Netzwerk kann die wichtigsten visuellen Aufgaben einer Maus erfüllen und ist gegenüber Störungen äußerst robust. Ein nächster Schritt wird nun sein, die Unterschiede zwischen der biologischen Sehfunktion der Simulation und der Sehfunktion von künstlichen neuronalen Netzwerken zu untersuchen.
    Dass sich Forschende das Gehirn zum Vorbild nehmen, ist nicht neu, aber umso effektiver. Neuronale Netz des Gehirns sind nicht nur besonders leistungsfähig, sondern auch enorm energieeffizient. Neurone sind nicht ständig aktiv, sondern „feuern“ nur, wenn sie für eine Aufgabe gebraucht werden. Künstliche neuronale Netzwerke bilden dieses Vorgehen nach. Sie sind allerdings nur „gehirninspiriert“ und sowohl deren Neurone als auch die Architektur des Netzwerks sind ganz anders als im Gehirn. Daher sind biologische Simulations-Modelle wichtig, mit denen Forschende das Gehirn besser verstehen wollen. Diese Erkenntnisse wiederrum können aber in der Computertechnik eingesetzt werden, wie Wolfgang Maass anmerkt: „Wir starten gerade einen Pilotversuch mit dem Prozessorhersteller Intel und bauen unsere biologischen Modelle in seine neuromorphen Chips ein, um zu beobachten, ob sie dadurch wirklich energieeffizienter werden.“

    Vollständiges Modell statt Approximation

    Bisher wurden Funktionsweisen lediglich an kleinen Modellen – Approximationen des Gehirns mit geringer Detailtreue – nachgebildet. Dank großzügiger Rechenzeit an einem von Europas leistungsfähigsten Supercomputer in Jülich und Fortschritten im Chipdesign sowie der Software konnten die Grazer Forscher aber mit dem detaillierten biologischen Modell rechnen. „Wir haben gezeigt, dass dies mit dem heutigen Stand der Technik möglich ist und erwarten uns davon einen neuen Trend in der Forschung, der uns einen Schritt näher zum Verstehen des Gehirns bringt.“


    Contact for scientific information:

    Wolfgang MAASS
    Institut für Grundlagen der Informationsverarbeitung | TU Graz
    Inffeldgasse 16b
    8010 Graz
    Tel.: +43 316 873 5822
    wolfgang.maass@tugraz.at


    Original publication:

    A data-based large-scale model for primary visual cortex enables brain-like robust and versatile visual processing
    Chen Guozhang, Franz Scherr, Wolfgang Maass, TU Graz
    Science Advances
    DOI: 10.1126/sciadv.abq7592


    Images

    Wolfgang Maass
    Wolfgang Maass
    Helmut Lunghammer
    Lunghammer - TU Graz

    Forscher der TU Graz haben erstmals auf einem detaillierten Modell des Gehirns der Maus die Funktion des Sehens nachgebildet.
    Forscher der TU Graz haben erstmals auf einem detaillierten Modell des Gehirns der Maus die Funktion ...
    Gbor - AdobeStock
    Gbor - AdobeStock


    Criteria of this press release:
    Journalists, Scientists and scholars
    Information technology
    transregional, national
    Scientific Publications
    German


     

    Wolfgang Maass


    For download

    x

    Forscher der TU Graz haben erstmals auf einem detaillierten Modell des Gehirns der Maus die Funktion des Sehens nachgebildet.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).