idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
11/03/2022 15:40

Wide-bandgap power at silicon cost – YESvGaN project develops competitive GaN process technologies

Amelie Schardt Presse/Media
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB

    Can we contribute to the worldwide energy challenge by maximizing the efficiency in power conversion at a low cost? The answer is: YESvGaN! So, the goal of the YESvGaN consortium is to create a new class of vertical power transistors based on Gallium Nitride (GaN), so-called vertical GaN membrane transistors. These novel power devices combine the efficiency of wide-bandgap (WBG) semiconductors with the lower cost of the established silicon semiconductor technology. Within YESvGaN, the development of the required new technology all the way from wafer to application is covered.

    Since the project launched on May 1, 2021, impressive developments have been made by the project consortium, consisting of 23 European partners. Vertical device demonstrators with FinFET architectures and Schottky diodes – being important building blocks for a novel vertical membrane transistor technology – have been created successfully. Also, vertical layer stacks have been grown on silicon and sapphire with a diode breakdown voltage exceeding 500 V. This is a major step to reach the overall project goal of 1200 V blocking voltage on low-cost silicon or sapphire substrates. As a result, the market for future high-performance applications, e.g., in the automotive industry, could be accessible for the GaN semiconductor material.

    For vertical GaN power transistors with ultra-low resistance contribution from the backside contact, the development of a reliable membrane process technology is crucial. YESvGaN has succeeded in producing such fragile GaN membranes with a thickness of a few micrometers and a diameter of several millimeters without breaking. Novel assembly and interconnection technologies are being tested for the final application of membrane vertical GaN power transistors under extreme conditions. This includes operating temperatures of more than 250 ⁰C. In addition, virtual prototypes are being developed to evaluate the efficiency of GaN devices in the target applications using digital twins.

    We are confident that YESvGaN will continue to achieve promising results in the next phases of the project and take a significant step towards fully vertical GaN membrane transistors.
    So, can we contribute with energy-efficient low-cost vertical GaN technology to the worldwide energy challenge? Our answer remains: YESvGaN!


    Contact for scientific information:

    Dr. rer. nat. Elke Meißner
    Group Manager GaN & AlN
    Fraunhofer Institute for Integrated Systems and Device Technology IISB
    Schottkystrasse 10
    91058 Erlangen, Germany
    Phone +49 9131 761 - 136
    elke.meissner@iisb.fraunhofer.de


    More information:

    http://YESvGaN Project Homepage: https://www.yesvgan.eu/en
    http://GaN & AlN activities and services at Fraunhofer IISB: https://www.iisb.fraunhofer.de/en/research_areas/materials/gan-aln.html


    Images

    One year after the project kick-off, the YESvGaN project consortium finally met in person at the Bosch research campus in Renningen, Germany
    One year after the project kick-off, the YESvGaN project consortium finally met in person at the Bos ...
    C. Huber
    C. Huber / Robert Bosch GmbH

    Free and intact GaN membranes on a Si carrier wafer
    Free and intact GaN membranes on a Si carrier wafer
    C. Huber
    C. Huber / Robert Bosch GmbH


    Attachment
    attachment icon Wide-bandgap power at silicon cost – YESvGaN project develops competitive GaN process technologies

    Criteria of this press release:
    Business and commerce, Journalists, Scientists and scholars
    Chemistry, Electrical engineering, Energy, Materials sciences
    transregional, national
    Research projects, Research results
    English


     

    One year after the project kick-off, the YESvGaN project consortium finally met in person at the Bosch research campus in Renningen, Germany


    For download

    x

    Free and intact GaN membranes on a Si carrier wafer


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).