idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
11/09/2022 12:39

Electrons and photons in a twin pack

Dr. Bernold Feuerstein Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Kernphysik

    Using a new experimental method, physicists from the Max Planck Institute for Nuclear Physics in Heidelberg investigated the resonant two-photon ionisation of helium with improved spectral resolution and angular resolution. For this purpose, they utilised a reaction microscope in combination with a high-resolution extreme-ultraviolet (EUV) photon spectrometer developed at the Institute. The measurements have been performed at the Free Electron Laser in Hamburg (FLASH), a brilliant radiation source, delivering intense EUV laser flashes. This allows the events from each individual laser flash to be analysed in terms of photon energy, yielding spectrally high-resolution data sets.

    Helium, as the simplest and most accessible multi-electron system, is ideally suited for fundamental theoretical and experimental studies. Here, the mutual electrical repulsion of the two electrons plays an essential role – it accounts for a good third of the total binding energy. Of particular and fundamental interest is the interaction with photons (the quanta of light). Researchers from the groups around Christian Ott and Robert Moshammer in the division of Thomas Pfeifer at the Max Planck Institute for Nuclear Physics in Heidelberg have investigated the resonant two-photon ionisation of helium in detail at the free-electron laser FLASH of DESY in Hamburg.

    In this nonlinear process, both electrons simultaneously absorb two extreme-ultraviolet photons and form a doubly excited state in which, illustratively, both electrons are on a large orbit around the helium nucleus. The correlated pair dance of the electrons is unstable and their mutual repulsion causes one to leave the atom while the other falls back to the ground state of the helium ion – a process called autoionization (see Fig. 1). It occurs when the sum energy of the photons just corresponds to the discrete excitation energy, i.e. when the so-called resonance condition is fulfilled.

    For a detailed measurement, the researchers used a reaction microscope (REMI), which allows a kinematically complete detection of both the photoelectrons and the helium ions. However, a fundamental difficulty still had to be overcome: Although the free-electron laser delivers sufficiently intense ultraviolet radiation, the energy of the photons has a rather broad bandwidth and the energy range of highest intensity also varies from laser flash to laser flash.

    However, it is this very property that has now been exploited: "We used a spectrometer to measure the energy distribution of the photons in each individual shot and then sorted them according to the photon energy with the highest intensity (peak position)," explains first author Michael Straub. "Synchronised with the REMI signals, we thus obtain spectrally high-resolution data sets, digitally tunable over the entire bandwidth." (Fig. 2). The resonance was resolved with this trick and the angular distribution of the photoelectrons in the resonance measured. In direct comparison with theoretical calculations from the group of Chris Greene (Purdue University), there was good agreement, but also deviations upon closer inspection. One explanation is small contributions from non-resonant ionisation by single photons of twice the energy (red curve in Fig. 1), which account for about 1% of the FLASH photon flux.

    "These results and the newly developed experimental methodology open up a promising avenue for exploring fundamental interactions of a few photons with a few electrons," says group leader Christian Ott, summarising the scope of the work.


    Contact for scientific information:

    Dr. Christian Ott
    Phone: +49 6221 516-577
    christian.ott@mpi-hd.mpg.de

    PD Dr. Robert Moshammer
    Phone: +49 6221 516-461
    robert.moshammer@mpi-hd.mpg.de

    Prof. Dr. Thomas Pfeifer
    Phone: +49 6221 516-380
    thomas.pfeifer@mpi-hd.mpg.de


    Original publication:

    Differential measurement of electron ejection after two-photon two-electron excitation of helium
    Michael Straub, Thomas Ding, Marc Rebholz, Gergana D. Borisova, Alexander Magunia, Hannes Lindenblatt, Severin Meister, Florian Trost, Yimeng Wang, Steffen Palutke, Markus Braune, Stefan Düsterer, Rolf Treusch, Chris H. Greene, Robert Moshammer, Thomas Pfeifer and Christian Ott
    Physical Review Letters, 28. Oktober 2022. DOI: https://doi.org/10.1103/PhysRevLett.129.183204


    Images

    Fig. 1: (a) Energy levels, (b) calculated excitation function and angular distributions (insets) for EUV photoionisation of helium: absorption of two photons (blue) and of one photon of double energy (red).
    Fig. 1: (a) Energy levels, (b) calculated excitation function and angular distributions (insets) for ...

    MPIK

    Fig. 2: Spectrum of photons unsorted (top) and sorted by peak position (bottom).
    Fig. 2: Spectrum of photons unsorted (top) and sorted by peak position (bottom).

    MPIK


    Criteria of this press release:
    Journalists, Scientists and scholars, Students
    Physics / astronomy
    transregional, national
    Research results
    English


     

    Fig. 1: (a) Energy levels, (b) calculated excitation function and angular distributions (insets) for EUV photoionisation of helium: absorption of two photons (blue) and of one photon of double energy (red).


    For download

    x

    Fig. 2: Spectrum of photons unsorted (top) and sorted by peak position (bottom).


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).