idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
12/06/2022 18:49

Long-range information transport in antiferromagnets

Kathrin Voigt Kommunikation und Presse
Johannes Gutenberg-Universität Mainz

    Antiferromagnets are suitable for transporting spin waves over long distances

    Smaller, faster, more powerful: The demands on microelectronic devices are high and are constantly increasing. However, if chips, processors and the like are based on electricity, there are limits to miniaturization. Physicists are therefore working on alternative ways of transporting information, such as about spin waves, also called magnons, for example. The advantage would be that they have very little energy loss and can therefore spread over long distances. However, spin waves do not form in just any material, they need certain properties to do so. Hematite, for example, the main component of rust, offers these properties.

    New material class for spin wave transport

    In an EU project together with the Université Paris-Saclay, Shanghai University and Université Grenoble Alpes, physicists at Johannes Gutenberg University Mainz (JGU) have now been able to develop a completely new class of materials for transporting spin waves: antiferromagnets with tilted magnetic moments. "These materials have the potential to increase computing speed significantly compared to existing devices and at the same time greatly reduce waste heat," said Felix Fuhrmann of Mainz University. In the antiferromagnets, the spin waves and thus the information stored in them can be transported over long distances – a distance of around 500 nanometers is possible. It may not sound much, but transistors in chips today are usually only about seven nanometers in size, so the range of the spin waves is significantly greater than the distance required. "The transport of information over long distances is crucial for an application in microelectronic devices. With the antiferromagnets, we have found a material class that offers this important property and thus opens up a large pool of materials that can be used for devices," emphasized Fuhrmann.

    An external magnetic field as enabler

    The scientists examined the canted antiferromagnet yttrium iron oxide, YFeO₃. Since its crystal structure differs fundamentally from that of the established hematite, the researchers initially asked themselves whether spin waves can still form and propagate – and found out that they definitely can. A little trick makes it possible: the physicists apply an external magnetic field to the material. "Magnons are a collective excitation of the magnetic moments in a magnetically ordered crystal. They can therefore be manipulated by magnetic fields, as we were able to successfully demonstrate," said Fuhrmann.

    The research was recently published in Nature Communications. Professor Mathias Kläui, who initiated the study in his group, emphasized: "The international collaboration with leading groups within a project funded by the European Union was the key to this success."

    Related links:
    https://www.klaeui-lab.physik.uni-mainz.de/homepage-prof-dr-mathias-klaeui/ - Kläui Lab at the JGU Institute of Physics

    Read more:
    https://www.uni-mainz.de/presse/aktuell/16669_ENG_HTML.php - press release "Energy-efficient computing with tiny magnetic vortices" (6 Dec. 2022) ;
    https://www.uni-mainz.de/presse/aktuell/12744_ENG_HTML.php - press release "Faster and more efficient information transfer" (10 Dec. 2020) ;
    https://www.uni-mainz.de/presse/aktuell/11958_ENG_HTML.php - press release "Storing information in antiferromagnetic materials" (24 Aug. 2020) ;
    https://www.uni-mainz.de/presse/aktuell/10211_ENG_HTML.php - press release "Physicists make one step toward using insulating antiferromagnetic materials in future computers" (25 Oct. 2019) ;
    https://www.uni-mainz.de/presse/aktuell/3937_ENG_HTML.php - press release "Antiferromagnets prove their potential for spin-based information technology" (29 Jan. 2018)


    Contact for scientific information:

    Felix Fuhrmann
    Institute of Physics
    Johannes Gutenberg University Mainz
    55099 Mainz
    phone: +49 6131 39-23620
    e-mail: fefuhrma@students.uni-mainz.de
    https://www.klaeui-lab.physik.uni-mainz.de/homepage-prof-dr-mathias-klaeui/


    Original publication:

    S. Das et al., Anisotropic long-range spin transport in canted antiferromagnetic orthoferrite YFeO₃, Nature Communications 13: 6140, 17 October 2022,
    DOI: 10.1038/s41467-022-33520-5
    https://www.nature.com/articles/s41467-022-33520-5


    Images

    Criteria of this press release:
    Business and commerce, Journalists, Scientists and scholars
    Electrical engineering, Information technology, Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).