idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
01/25/2023 10:00

Gemeinsame Pressemitteilung von Fraunhofer IAF und Charité: Mit Diamant-Sensoren neurale Exoskelette präziser steuern

Jennifer Funk Marketing und Kommunikation
Fraunhofer-Institut für Angewandte Festkörperphysik IAF

    Gehirn-Computer-Schnittstellen können gelähmten Menschen durch die Steuerung von Exoskeletten einen Teil ihrer Bewegungsfähigkeit zurückgeben. Von der Kopfoberfläche lassen sich komplexere Steuersignale bislang jedoch nicht auslesen, weil herkömmliche Sensoren hierfür nicht sensitiv genug sind. Dieser Herausforderung hat sich ein Verbund aus Fraunhofer IAF, Charité – Universitätsmedizin Berlin, Universität Stuttgart und Industriepartnern angenommen: Im kürzlich gestarteten BMBF-Leuchtturmprojekt »NeuroQ« entwickeln die Projektpartner hochsensitive diamantbasierte Quantensensoren, die es Gelähmten ermöglichen sollen, neurale Exoskelette präziser zu steuern.

    Für Menschen, die beispielsweise aufgrund einer Rückenmarksverletzung, eines Schlaganfalls oder einer anderen Krankheit ihre Hände oder Beine nicht bewegen können, stellen sog. Brain-Computer-Interfaces (BCIs) eine große Hoffnung dar: Diese Gehirn-Computer-Schnittstellen ermöglichen die Steuerung eines Gerätes allein mittels Hirnaktivität – so kann etwa ein Exoskelett nur durch die Vorstellung von einer Bewegung gesteuert werden. Damit bieten BCIs gelähmten Menschen die Chance, die Kontrolle über einen Teil ihrer Bewegungsfähigkeit wiederzuerlangen.
    BCIs, die Hirnaktivität von der Kopfoberfläche messen, haben den Vorteil, dass sie Patienten einen aufwendigen und risikobehafteten chirurgischen Eingriff am Gehirn ersparen. »Wir haben bereits ein nicht-invasives BCI-System entwickelt, das es Menschen mit hoher Querschnittslähmung ermöglicht, mittels willkürlicher Veränderung ihrer Hirnströme, Alltagsgegenstände zu greifen«, berichtet Prof. Dr. Surjo R. Soekadar, Einstein-Professor für Klinische Neurotechnologie an der Charité, und fügt hinzu: »Trotz der beachtlichen Fortschritte ist es bislang jedoch nicht gelungen, komplexe Handbewegungen mit einem solchen nicht-invasiven System zu steuern.« So lässt sich zwar die Bewegungsabsicht erkennen, aber nicht, welche Bewegung genau ausgeführt werden soll. Um dies zu erreichen, müsste die Sensitivität der Sensoren erheblich gesteigert werden.

    Quantensensoren messen Hirnströme

    Dieser Aufgabe haben sich nun neun Partner angenommen und das Projekt »Laserschwellen-Magnetometer für neuronale Kommunikationsschnittstellen«, kurz »NeuroQ«, gestartet. In dem vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Vorhaben entwickeln die Projektpartner Quantensensoren, die so sensitiv sind, dass sie kleinste Magnetfelder, die durch Hirnströme entstehen, messen können. Diese Quantenmagnetometer sollen in ein BCI-System integriert werden und es damit Gelähmten ermöglichen, ein Hand-Exoskelett deutlich präziser zu steuern als es bislang der Fall ist.

    Magnetfelder liefern deutlichere Signale

    Bei nicht-invasiven BCIs erfolgt die Messung der neuronalen Aktivität bislang hauptsächlich über elektrische Felder. Dabei bringt die Messung von Magnetfeldern erhebliche Vorteile mit sich: »Magnetfelder durchdringen Haut und Schädel unverzerrt und liefern damit wesentlich deutlichere Signale als elektrische Felder, da diese auf dem Weg von der Quelle zum Sensor stark abgeschwächt werden. So hat die Magneto-Enzephalographie (MEG) signifikante Vorteile gegenüber der Elektro-Enzephalographie (EEG), wird jedoch aufgrund technischer Hürden nur selten angewendet«, erklärt Dr. Jan Jeske, Projektleiter von »NeuroQ« und Forscher am Fraunhofer IAF.

    Die technischen Hürden von MEGs liegen an den eingesetzten Sensortechnologien: SQUID-Sensoren (Superconducting Quantum Interference Devices) sind hochpräzise, benötigen allerdings eine Tieftemperaturkühlung, was ihren Einsatz extrem teuer und aufwendig macht. Optisch gepumpte Magnetometer (OPMs) auf der Basis von Dampfzellen übertreffen sogar die Sensitivität von SQUIDs, funktionieren jedoch nur im absoluten Nullfeld – das bedeutet, dass für ihren Betrieb jedes Hintergrundmagnetfeld (inklusive Erdmagnetfeld) vollständig abgeschirmt werden muss, was ebenfalls einen enormen bautechnischen Aufwand mit sich bringt.

    »Bislang sind keine Magnetometer realisiert worden, die unter Umgebungsbedingungen – also in nicht abgeschirmten Umgebungen – eine Empfindlichkeit erreichen, die für den Nachweis neuromagnetischer Felder geeignet wäre. Das Vorhaben von ›NeuroQ‹ übertrifft den Stand der Technik erheblich«, fasst Prof. Dr. Jörg Wrachtrup, Leiter des 3. Physikalischen Instituts an der Universität Stuttgart, zusammen.

    Diamantbasierter Sensor erlaubt Einsatz in Alltagsumgebung

    Das Besondere an den im Projekt »NeuroQ« zu entwickelnden Quantenmagnetometer ist ihr Ausgangsmaterial: Sie basieren auf NV-Zentren (nitrogen-vacancy center) in Diamant und verfügen damit über einzigartige Eigenschaften: Diamant-Quantenmagnetometer sind die einzigen hochsensitiven Magnetometer, die bei Raum- bzw. Körpertemperatur funktionieren. Sie messen auch in Anwesenheit eines Hintergrundmagnetfelds und können die genaue Richtung eines Magnetfeldes (d. h. alle drei Komponenten des Vektors) bestimmen. Zudem sind sie biokompatibel und können nah an die Quelle herangebracht werden, was wiederum stärkere Signale ermöglicht.

    Das alles führt dazu, dass Diamant-Quantenmagnetometer perspektivisch in Kliniken, Praxen, einer Reha-Umgebung, aber auch zu Hause und im Alltag eingesetzt werden könnten, um die Lebensqualität gelähmter Menschen wesentlich zu verbessern und einen wichtigen Beitrag zu ihrer gesellschaftlichen Inklusion zu leisten.

    Multidisziplinäres Verbundprojekt

    Da die bislang entwickelten Diamant-Magnetometer die geforderte Empfindlichkeit noch nicht erreichen, sollen im Rahmen von »NeuroQ« zunächst neue hochsensitive Quantenmagnetometer auf Basis eines neuartigen NV-Diamant-Lasers realisiert werden. Das Messystem wird anschließend mit der benötigten Kommunikationsschnittstelle zu einem BCI-System entwickelt und zur Demonstration, Auswertung und Weiterentwicklung im klinischen Umfeld an der Charité in Berlin eingesetzt. Die beteiligten Start-ups sowie kleine und mittlere Unternehmen (KMU) leisten nicht nur einen erheblichen Beitrag zur Entwicklung, sondern auch zur anschließenden Verwertung der Technologie und fördern damit den Transfer der Ergebnisse in marktfähige Produkte und Anwendungen.

    Das BMBF fördert das fünfjährige Verbundvorhaben im Rahmen der Maßnahme »Leuchtturmprojekte der quantenbasierten Messtechnik zur Bewältigung gesellschaftlicher Herausforderung« mit insgesamt knapp 9 Millionen Euro.

    Die Projektpartner im Überblick:

    • Fraunhofer-Institut für Angewandte Festkörperphysik IAF
    • Charité – Universitätsmedizin Berlin
    • Universität Stuttgart
    • Twenty-One Semiconductors
    • Sacher Lasertechnik GmbH
    • Advanced Quantum GmbH
    • W+R Schirmungstechnik GmbH
    • neuroConn GmbH
    • NIRx Medizintechnik GmbH


    More information:

    http://www.neuroq.de Projektwebseite


    Images

    Projektlogo
    Projektlogo

    lidiia; Irina Shi – stock.adobe.com; Fraunhofer IAF

    Ein Patient testet ein von der Charité entwickeltes Brain-Computer-Interface zur Steuerung einer Exoskelett-Hand.
    Ein Patient testet ein von der Charité entwickeltes Brain-Computer-Interface zur Steuerung einer Exo ...

    AG Klinische Neurotechnologie, Charité – Universitätsmedizin Berlin


    Criteria of this press release:
    Journalists, Scientists and scholars
    Medicine, Physics / astronomy
    transregional, national
    Cooperation agreements, Research projects
    German


     

    Projektlogo


    For download

    x

    Ein Patient testet ein von der Charité entwickeltes Brain-Computer-Interface zur Steuerung einer Exoskelett-Hand.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).