idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
01/26/2023 15:17

Second funding period for Lukas Zeininger's Emmy Noether project

Juliane Jury Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Kolloid- und Grenzflächenforschung

    (Potsdam) The German Research Foundation (DFG) is supporting the research on novel artificially intelligent emulsion systems in Dr. Lukas Zeininger's Emmy Noether Junior Research Group in the Department of Colloid Chemistry at the Max Planck Institute of Colloids and Interfaces (MPICI) for another three years with additional funding of about one million euros.

    Dr. Lukas Zeininger's independent junior research group has received a second funding phase from the German Research Foundation (DFG) for its research into the generation and properties of dynamic liquid colloids, a new form of artificial active emulsion.
    Oil-in-water or water-in-oil emulsions are central components of a wide range of food and everyday products such as cosmetics and medical articles, paints and detergents. Building on the study of classical single-component droplets, the research group of Dr. Lukas Zeininger focuses increasingly on the preparation and study of emulsions consisting of multiphase droplets, complex emulsions. These systems can be controlled externally in a unique way, which enables applications ranging from biosensors to the construction of autonomously acting, moving microreactors. This is considered a first step towards soft micro robots with "decentralized intelligence".

    The first funding phase focused on basic research into novel synthesis strategies and the investigation of the underlying physicochemical properties. "Highlights were certainly the production of biocompatible responsive emulsions on an aqueous basis, the development of a highly sensitive and effective sensor platform for the detection of foodborne pathogens, and the first demonstration of reversible chemotactic locomotion of emulsion droplets in response to specific pathogens," says Lukas Zeininger.

    In the continuation of the project, a focus is now laid on the autonomous reactivity of the complex emulsion systems. "Here we are learning from phenomena in nature. For example, without any external control, pine cones 'know' when to release their seeds by responding to optimal temperature and humidity," says Zeininger. He adds, "Another vivid example is the body's immune response, where a few molecular interactions on the surfaces of specific cells suffice to fight a disease without any impulse from nerves or the brain."

    In the Emmy Noether Young Investigators Group, the underlying concepts will be applied to artificial particles that are easy to produce synthetically, in order to create micro- and nanorobots that act autonomously in response to chemical stimuli. In this way, complex emergent behaviors of artificial systems will be realized. These include their self-regulated ability to communicate, move, evolve and self-organize in predetermined patterns or networks. "The ultimate goal is to make our micro- and nanorobots compete with the regulatory and motiecapabilities of Nature's systems" says Lukas Zeininger.


    More information:

    https://www.mpikg.mpg.de/6787213/news_publication_19811382_transferred?c=132305 (Link to press release)
    https://www.mpikg.mpg.de/6207230/responsive-soft-materials-interfaces (Link to Emmy Noether Group page)


    Images

    Portrait Dr. Lukas Zeininger
    Portrait Dr. Lukas Zeininger
    Lukas Zeininger
    Max-Planck-Institut für Kolloid- und Grenzflächenforschung / Lukas Zeininger


    Criteria of this press release:
    Business and commerce, Journalists, Scientists and scholars, Students, Teachers and pupils, all interested persons
    Chemistry
    transregional, national
    Contests / awards, Research projects
    English


     

    Portrait Dr. Lukas Zeininger


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).