PLEASE NOTE THE EMBARGO PERIOD:
PRESS RELEASE EMBARGOED UNTIL THURSDAY, 27 APRIL 2023, 14:00 (2:00 pm) U.S. Eastern Time (EDT)
Thanks to great technological advances, the genetic material of living beings can now be sequenced at a rapid rate. However, comparing genomic data poses tricky technical challenges. To simplify the analysis process, a team of scientists led by Prof. Michael Hiller from the Hessian LOEWE Centre for Translational Biodiversity Genomics (TBG) has developed a new method and presented it in the journal Science.
Thanks to great technological advances, the genetic material of living beings can now be sequenced at a rapid rate. Comparisons of genomes, whether of closely related or completely different species, reveal particularly interesting findings. In this way, information can be obtained on phylogenetic relationships, the formation of characteristics or on adaptive abilities. However, comparing genomic data poses tricky technical challenges. To simplify the analysis process, a team of scientists led by Prof. Michael Hiller from the Hessian LOEWE Centre for Translational Biodiversity Genomics (TBG) has developed a new method and presented it in the journal Science.
When comparing the genomes of different organisms, scientific knowledge is gained in a two-step process: First, the individual genes within the genome of the respective species must be localised. This process is called gene annotation. Then, for comparison, the second step is to determine which genes in the two organisms correspond to each other; such corresponding genes are called orthologs. Both steps are technically demanding and make it difficult to obtain new information from the genome data to be compared.
The new computational method TOGA simplifies such analyses and tackles both challenges together. The acronym stands for "Tool to infer Orthologs from Genome Alignments". To determine orthologous genes, researchers use the fact that the parts in the genes that code for proteins are generally more similar to each other than the coding sections of other genes. The TOGA method extends this similarity principle to the entire genomic context of a gene. "We have near complete genomes, so we might as well utilize them instead of focusing only on the protein-coding parts. By comparing whole genomes of different organisms and using machine learning, we can determine orthologous genes with a very high accuracy," explains study leader Michael Hiller, Professor of Comparative Genomics at the LOEWE Centre TBG and the Senckenberg Society for Nature Research, who started the project at the Max Planck Institute of Molecular Cell Biology and Genetics in Dresden.
The study showed that orthologous genes in other mammalian genomes can be accurately localised just using the known genes from human or mouse. Similarly, known genes from chicken can be used to locate orthologous genes in the genomes of other birds. "This has allowed us to apply TOGA to the genomes of hundreds of other species. By annotating and determining orthologous genes for more than 500 mammalian and 500 bird genomes, we have generated the largest cross-species gene resources for these vertebrate groups to date. These resources help determine the phylogeny of species and link changes in genes to changes in traits," Hiller adds.
In addition to Hiller's team, the study involved scientists from the Zoonomia Consortium, an international consortium of researchers investigating the genomic basis of common and specialised traits in mammals. The aim of the consortium is to use the possibilities of comparative genomics as a tool for human medicine and the conservation of biological diversity.
As part of the Zoonomia Consortium, Hiller and other Senckenberg researchers are also involved in the study "Evolutionary constraint and innovation across hundreds of placental mammals", which is published in the same issue of Science and investigates the evolution of mammalian genomes.
Prof. Dr. Michael Hiller
Comparative Genomics
LOEWE Centre for Translational Biodiversity Genomics (TBG)
Tel. +49 (0)69 7542-1398
michael.hiller@senckenberg.de
Publication in Science:
Bogdan M. Kirilenko, Chetan Munegowda, Ekaterina Osipova, David Jebb, Virag Sharma, Moritz Blumer, Ariadna E. Morales, Alexis-Walid Ahmed, Dimitrios-Georgios Kontopoulos, Leon Hilgers, Kerstin Lindblad-Toh, Elinor K. Karlsson, Zoonomia Consortium, Michael Hiller.
"Integrating gene annotation with orthology inference at scale".
https://doi.org/10.1126/science.abn3107
The new TOGA method for comparative genome analysis was used by the study team on elephant seals (Mi ...
Andy Witchger
Andy Witchger, flickr, licence CC BY 2.0
Among the 500 bird species whose genomes were analysed for the study and compared with the genetic i ...
Hector Bottai
Hector Bottai, Wikimedia Commons, Licence CC BY-SA 4.0
Criteria of this press release:
Journalists
Biology, Environment / ecology, Oceanology / climate, Zoology / agricultural and forest sciences
transregional, national
Scientific Publications, Transfer of Science or Research
English
The new TOGA method for comparative genome analysis was used by the study team on elephant seals (Mi ...
Andy Witchger
Andy Witchger, flickr, licence CC BY 2.0
Among the 500 bird species whose genomes were analysed for the study and compared with the genetic i ...
Hector Bottai
Hector Bottai, Wikimedia Commons, Licence CC BY-SA 4.0
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).