idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
04/27/2023 17:01

The folding is the key

Dr. Andreas Fischer Presse und Kommunikation
Helmholtz-Zentrum für Infektionsforschung

    Researchers at Helmholtz Institute Würzburg discover potential new antiviral targets in HIV-1

    Ribonucleic acid (RNA) folds into complex structures, which allow it to interact specifically with other molecules in the cell. In HIV-1, minute differences in RNA folding can be crucial in determining whether viral RNA is “packaged” and thus leads to viral replication. This has now been discovered by researchers at the Helmholtz Institute Würzburg by enhancing a method used to study RNA structure with a novel sequencing technology. Their findings could help to design new antivirals and were published today in the journal Nature Methods.

    Human Immunodeficiency Viruses (HIV) are responsible for millions of infections worldwide. By causing the Acquired Immunodeficiency Syndrome (AIDS), these pathogens have led to nearly 40 million deaths since the outbreak of the HIV pandemic in the 1980s. For decades, scientists have been researching possible antiviral therapeutics, and effective drugs are now available for those infected. However, it is the combination of multiple antivirals with different targets which has revolutionized HIV therapy, and new drugs are continuously needed to combat drug resistance.

    “In our study, we’re introducing a possible new target to stay one step ahead of HIV and other potentially zoonotic retroviruses,” says Redmond Smyth. Smyth heads a research group at the Helmholtz Institute for RNA-based Infection Research (HIRI) in Würzburg, a site of the Braunschweig Helmholtz Centre for Infection Research (HZI) in cooperation with the Julius-Maximilians-Universität (JMU) Würzburg, and has led the current study.

    “Our new method can distinguish the structural variations between highly similar RNAs, even those created through splicing,” explains Patrick Bohn, a PhD student in the Smyth lab. The researcher is the co-first author of the study, which was published today in the journal Nature Methods.

    Splicing is a biological process that, in a sense, refines a cell's genetic blueprint present in the original messenger RNA for subsequent translation into new proteins. “In higher organisms, splicing generates protein diversity, but our findings indicate that it can also contribute to the biological function by producing novel RNA structures,” Bohn says.

    Very similar yet different
    The current findings were obtained by improving a technology to measure how RNA is folded in the cell. Many scientists have attempted to study structures of spliced and unspliced HIV-1 RNA, but this has been challenging because previous technologies only measured RNA structure in small fragments. Scientists at the HIRI have now applied long read sequencing to study RNA structure across the full length of the RNA molecule, and used it to show how the HIV-1 virus selects its full-length RNA for packaging into viral particles.

    “We unveiled that HIV-1 RNA folds very differently when spliced—a discovery that reveals the importance of studying biological processes taking into account the complex native environment,” says Anne-Sophie Gribling-Burrer, who is a post-doctoral researcher and co-first author on the paper. As a result, spliced versions of HIV-1 RNA were shown not to be packaged. “Spliced RNAs do not have some of the structural features that are required for being packaged, thus providing a mechanism of packaging selectivity and affecting the replication of the virus,” Gribling-Burrer explains.

    “Understanding this mechanism is a key step in developing new antivirals against a wide range of retroviruses,” states Redmond Smyth. Besides that, the researchers believe their method will be useful to a broad field of molecular biologists in vastly different areas in the future.

    Technical Background
    Single-stranded RNA can fold into complex structures by base pairing. Genome-wide measurements of RNA structure can be obtained using reagents that react with unpaired bases, leading to adducts that can be identified by mutational profiling on next generation sequencing machines. One drawback of these experiments is that short sequencing reads can rarely be mapped to specific transcript isoforms. Consequently, information is acquired as a population average in regions that are shared between transcripts thus blurring the underlying structural landscape.

    In their study, scientists at the Helmholtz Institute Würzburg introduce nanopore dimethyl-sulfate mutational profiling (Nano-DMS-MaP), a method that provides isoform resolved structural information of highly similar RNA molecules.

    About HIV:
    The human immunodeficiency virus (HIV) belongs to the large family of retroviruses. These viruses are protein-coated, and their genome is made of single-stranded ribonucleic acid (RNA). HIV-1 and HIV-2 are the two variants of the virus known to infect humans. The present study addresses HIV-1, which represents more than 90 percent of all infections. It is highly probable that infections have their origin in a zoonosis: Zoonotic viruses are pathogens that are mutually contagious between humans and animals.

    Splicing:
    Splicing is a process by which the non-coding segments of genes—known as introns, that are not used to produce proteins—are being removed from the original messenger RNA. This leaves behind only the coding segments, called exons, which are then rejoined to one another. The process creates a mature messenger RNA template, i.e. the blueprint for new proteins, which is ready for protein synthesis.

    Helmholtz Institute for RNA-based Infection Research:
    The Helmholtz Institute for RNA-based Infection Research (HIRI) was founded in May 2017. It is a joint institution of the Helmholtz Centre for Infection Research (HZI) in Braunschweig and the Julius-Maximilians-Universität Würzburg (JMU). Based on the University hospital campus, the HIRI is the first federal institute to focus on the role of ribonucleic acids (RNAs) in infection processes. Its mission is to combine basic research with the development of new RNA-centric therapeutic approaches to treat infections. http://www.helmholtz-hiri.de

    Helmholtz Centre for Infection Research:
    Scientists at the Helmholtz Centre for Infection Research (HZI) in Braunschweig and its other sites in Germany are engaged in the study of bacterial and viral infections and the body’s defence mechanisms. They have a profound expertise in natural compound research and its exploitation as a valuable source for novel anti-infectives. As member of the Helmholtz Association and the German Center for Infection Research (DZIF) the HZI performs translational research laying the ground for the development of new treatments and vaccines against infectious diseases. http://www.helmholtz-hzi.de/en

    This press release is also available on our website: https://www.helmholtz-hzi.de/en/news-events/news/view/article/complete/auf-die-f....

    Media Contact:
    Dr. Britta Grigull
    Head of Communications
    Helmholtz Institute for RNA-based Infection Research (HIRI)
    +49 931 31 81801
    presse@helmholtz-hiri.de


    Original publication:

    Bohn P, Gribling-Burrer A-S, Ambi UB, Smyth RP (2023)
    Nano-DMS-MaP-seq allows isoform specific RNA structure determination
    Nature Methods, DOI: 10.1038/s41592-023-01862-7
    https://www.nature.com/articles/s41592-023-01862-7


    Images

    Anne-Sophie Gribling-Burrer, Redmond Smyth, Patrick Bohn, and Uddhav Ambi (left to right) have discovered a new Achilles’ heel in HIV.
    Anne-Sophie Gribling-Burrer, Redmond Smyth, Patrick Bohn, and Uddhav Ambi (left to right) have disco ...
    Luisa Macharowsky
    HIRI/Luisa Macharowsky


    Criteria of this press release:
    Business and commerce, Journalists, Scientists and scholars, Students
    Biology, Chemistry, Medicine
    transregional, national
    Research results
    English


     

    Anne-Sophie Gribling-Burrer, Redmond Smyth, Patrick Bohn, and Uddhav Ambi (left to right) have discovered a new Achilles’ heel in HIV.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).