idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
05/16/2023 14:35

Synthetische Biologie: Proteine setzen Vesikel in Bewegung

LMU Stabsstelle Kommunikation und Presse
Ludwig-Maximilians-Universität München

    Biophysiker haben ein neues zellähnliches Transportsystem konstruiert und damit auf dem Weg zur künstlichen Zelle einen wichtigen Fortschritt erzielt.

    Künstliche Zellen mit lebensähnlichen Eigenschaften aus minimalen Komponenten nachzubauen ist ein wichtiges Ziel der Synthetischen Biologie. Die Fähigkeit zur eigenständigen Fortbewegung ist dabei eine zentrale Eigenschaft, die im Reagenzglas nur schwer zu rekonstruieren ist. Ein Team um die Physiker Erwin Frey, Inhaber des Lehrstuhls für Statistische und Biologische Physik an der LMU, und Petra Schwille vom MPI für Biochemie ist dabei nun einen wichtigen Schritt vorangekommen, wie die Forschenden im Fachmagazin Nature Physics berichten.

    Den Wissenschaftlerinnen und Wissenschaftlern ist es gelungen, von einer Lipidmembran umschlossene Vesikel – sogenannte Liposomen – auf einer tragenden Membran ständig in Bewegung zu halten. Angetrieben werden sie durch die Wechselwirkung der Vesikelmembran mit bestimmten Proteinmustern, die wiederum den biochemischen „Treibstoff“ ATP benötigen. Hervorgerufen werden diese Muster durch ein bekanntes System für die biologische Musterbildung: Das System von Min Proteinen, das im Bakterium E. coli die Zellteilung steuert. Experimente in Schwilles Labor haben gezeigt, dass sich in dem künstlichen System membranbindende Min-Proteine asymmetrisch um die Vesikel anordnen und so mit diesen interagieren, dass sie sich in Bewegung setzen. Dabei binden die Proteine sowohl an die tragende Membran als auch die Vesikel selbst. „Gerichteten Transport von großen Membranvesikeln finden wir sonst nur in höheren Zellen, dafür sind dort komplexe Motorproteine zuständig. Dass kleine bakterielle Proteine dazu in der Lage sind, hat uns komplett überrascht“ kommentiert Schwille. „Es ist derzeit weder klar, was die Proteinmoleküle an der Membranoberfläche genau machen, noch wofür Bakterien solche eine Funktion benötigen könnten.“

    Zwei mögliche Mechanismen
    Freys Team identifizierte mithilfe theoretischer Analysen zwei unterschiedliche Mechanismen, die hinter der Bewegung stecken könnten: „Ein möglicher Mechanismus ist, dass die Proteine auf der tragenden Membran mit denen auf der Vesikeloberfläche wie in einer Art Reißverschluss wechselwirken und molekulare Verbindungen aufbauen oder auflösen“, erklärt Frey. „Wenn auf einer Seite mehr Proteine sind als auf der anderen, öffnet sich dort der Reißverschluss, während er sich auf der anderen schließt. Das Vesikel bewegt sich dann in die Richtung, in der sich weniger Proteine befinden.“ Die zweite Möglichkeit für einen Mechanismus besteht darin, dass die membrangebundenen Proteine die Vesikelmembran deformieren und deren Krümmung verändern. Diese Formänderung verursacht dann die Vorwärtsbewegung.

    „Beide Mechanismen sind im Prinzip möglich“, betont Frey. „Was wir aber mit Sicherheit wissen ist, dass die Proteinmuster auf der Unterlage und auf dem Vesikel ursächlich für die Bewegung sind. Damit sind wir auf dem Weg zur künstlichen Zelle einen riesigen Schritt vorangekommen.“ Die Autoren sind überzeugt, dass ihr System zukünftig als Modellierungsplattform für die Entwicklung künstlicher Systeme mit lebensähnlichen Bewegungen dienen kann.


    Contact for scientific information:

    Prof. Dr. Erwin Frey
    Statistische und Biologische Physik
    Fakultät für Physik der LMU
    E-Mail: frey@lmu.de
    Tel.: +49 (0) 89 / 2180-4538
    https://www.theorie.physik.uni-muenchen.de/lsfrey/members/group_leaders/erwin_fr...
    https://www.theorie.physik.uni-muenchen.de/lsfrey/group_frey/index.html


    Original publication:

    Meifang Fu, Tom Burkart, Ivan Maryshev, Henri G. Franquelim, Adrián Merino-Salomón, María Reverte-López, Erwin Frey, Petra Schwille: Mechanochemical feedback loop drives persistent motion of liposomes. Nature Physics 2023
    https://www.nature.com/articles/s41567-023-02058-8


    Images

    Criteria of this press release:
    Journalists
    Biology, Physics / astronomy
    transregional, national
    Research results
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).