idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
05/19/2023 11:00

Specially coated titanium reduces risk of clots on prostheses

Axel Burchardt Abteilung Hochschulkommunikation/Bereich Presse und Information
Friedrich-Schiller-Universität Jena

    An international research team led by the german University of Jena has now developed a promising approach to significantly reducing blood clotting on the heart valve material titanium.

    Around 25,000 artificial heart valves are implanted in Germany per year because the original heart valve is damaged, for example, by an infection. The mechanical heart valves are made of titanium dioxide, among other materials, and last for many years. However, because blood tends to clot on contact with these material surfaces, there is a risk of blood clots forming on the surface of mechanical heart valves. This can become life-threatening if such blood clots break away from the materials. For this reason, most people with mechanical heart valves take medication throughout their lives to reduce blood clotting.

    An international research team has now developed a promising approach to significantly reducing blood clotting on the heart valve material titanium. The results of the team from the Universities of Jena, Leipzig (both Germany) and Illinois Urbana-Champaign (USA), led by materials scientist Professor Klaus D. Jandt, have now been published in the journal Advanced Healthcare Materials. The journal also acknowledges the importance and potential of this discovery by featuring it on the cover of the current issue.

    Platelet activity changes according to material coating

    The researchers produced deposits of the blood protein fibrinogen on titanium dioxide with crystallographically differently oriented surfaces. The coated material surfaces then were exposed to blood platelets (thrombocytes), the activity of which, together with fibrinogen, plays a decisive role in the formation of blood clots. Significant differences in platelet activity were found on the material surfaces with different orientations.

    “While the platelets are very active on (001) titanium oxide surfaces and thus promote blood clotting, we found the opposite effect on (110) surfaces,” says PhD student Maja Struczynska. “The reason for this is the different behaviour of fibrinogen on the material surfaces.”

    “The mechanism for this effect is physical,” says Prof. Jandt, adding: “Fibrinogen adopts a specific fold on the more hydrophobic (110) surface with low surface energy, which in turn limits the access of the primary amino acid sequences recognised by platelets, thus minimising their adhesion.” Jandt sees enormous potential in the application of these materials to heart valves, as it should reduce the risk of blood clot formation and associated complications, and thus be of benefit to those affected.


    Contact for scientific information:

    Prof. Klaus D. Jandt
    Otto Schott Institute of Materials Research
    Friedrich Schiller University Jena
    Löbdergraben 32, 07743 Jena, Germany
    Tel.: +49 (0)3641 / 947730
    E-mail: k.jandt@uni-jena.de


    Original publication:

    Maja Struczynska, Izabela Firkowska-Boden, Nathan Levandovsky, Reinhard Henschler, Nour Kassir, and Klaus D. Jandt: How Crystallographic Orientation-Induced Fibrinogen Conformation Affects Platelet Adhesion and Activation onTiO2, Advanced Healthcare Materials 2023, DOI: 10.1002/adhm.20220250


    Images

    The Jena PhD student Maja Struczynska with the model of a single fibrinogen molecule.
    The Jena PhD student Maja Struczynska with the model of a single fibrinogen molecule.
    (Photo: Jens Meyer)
    University of Jena


    Criteria of this press release:
    Journalists
    Materials sciences, Medicine
    transregional, national
    Research results
    English


     

    The Jena PhD student Maja Struczynska with the model of a single fibrinogen molecule.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).