Um die Vorteile von Elementen und ihren molekularen Verbindungen gezielt ausspielen zu können, müssen Chemikerinnen und Chemiker ein grundlegendes Verständnis für deren Eigenschaften entwickeln. Im Fall des Elements Bismut hat ein Team des Max-Planck-Instituts für Kohlenforschung in Mülheim an der Ruhr nun einen wichtigen Schritt getan. Sie haben ihre Ergebnisse in "Science" veröffentlicht.
Die Chemikerinnen und Chemiker am Max-Planck-Institut für Kohlenforschung wollen durch das rationale Design neuartiger Katalysatoren dazu beitragen, die Prozesse in der Chemieindustrie effizienter und nachhaltiger zu gestalten. Um die Vorteile von Elementen wie beispielsweise Bismut und ihren molekularen Verbindungen gezielt spielen zu können, ist ein grundlegendes Verständnis ihrer Eigenschaften notwendig. Und dass es noch einige bislang „weiße Flecken“ im atomaren Kosmos gibt, welche es zu erschließen gilt, hat nun ein Team um Josep Cornellà und Frank Neese, Gruppenleiter und Direktor am Max-Planck-Institut für Kohlenforschung, gezeigt. Ihre Arbeit zu einer verblüffenden Eigenschaft von bestimmten Bismut-Komplexen haben die Forscher jetzt in der Fachzeitschrift „Science“ publiziert.
Warum Bismut? Das Team von Forschungsgruppenleiter Josep Cornellà interessiert sich schon eine ganze Weile für dieses besondere Metall. „Bismut kann – im Vergleich zu anderen Metallen – einige Vorteile bieten. So ist es leichter verfügbar und weniger giftig als andere Elemente. Darüber hinaus könnten besondere Eigenschaften von Bismut, die andere „klassische“ Katalyse-Kandidaten nicht aufweisen, für künftige Reaktionsdesigns eine Rolle spielen“, erläutert Cornellà.
Was macht das Mülheimer Bismut-Molekül nun so ungewöhnlich? Atome bestehen aus dem Atomkern sowie aus einer Atomhülle, welche aus Elektronen besteht. Bei der Entstehung von Molekülen bilden sich chemische Bindungen zwischen den einzelnen Atomen, welche aus Paaren von Elektronen. Für Chemiker sind Moleküle immer dann besonders interessant, wenn diese Elektronpaar Bildung nicht „vollständig“ ist, denn dann tendieren die Moleküle dazu sehr reaktiv zu sein und mit anderen Molekülen in Interaktion zu treten.
„Normalerweise sind Moleküle mit ungepaarten Elektronen magnetisch“, erklärt Frank Neese. Doch nun haben die Kohlenforscher ein Bismut-haltiges Molekül entwickelt, welches über ungepaarte Elektronen verfügt, und seltsamerweise dennoch keinerlei Magnetismus zeigt. Des Rätsels Lösung hat unter anderem mit der besonderen Stellung von Bismut im Periodensystem der Elemente zu tun. So ist Bismut das schwerste der stabilen Elemente – alle nachfolgenden Elemente sind radioaktiv. Aufgrund des besonders schweren Atomkerns legen die Elektronen ein besonderes Verhalten an den Tag, welches nur mit Hilfe von Einsteins Relativitätstheorie verstanden werden kann. Ebendiese Eigenschaften führen zu dem zunächst verblüffenden experimentellen Befund. „Unser Molekül ist nicht wirklich ‚unmagnetisch‘“, erklären die Forscher, „allerdings gibt es auf der Erde kein Magnetfeld welches stark genug wäre, um den Magnetismus in unserem System zu detektieren“. Die Berechnung solcher hochkomplizierten, großen Moleküle unter Einbeziehung von relativistischen Effekten wurde durch das in Mülheim entwickelte Quantenchemie-Programmpaket ORCA möglich gemacht, welches weltweit von mehr als 50000 Chemikern intensiv genutzt wird.
Die Wissenschaftler aus Mülheim haben mit ihrer Arbeit den „chemischen Steckbrief“ von Bismut um einen wichtigen Punkt ergänzt. Wie man solche Eigenschaften im Design von neuartigen Katalysatoren nutzen kann, wird sicherlich Gegenstand zukünftiger Forschungsarbeiten sein.
Dr. Josep Cornellà
Forschungsgruppenleiter am MPI für Kohlenforschung
+49 208/306-2428
+49 208/306-2994
cornella@kofo.mpg.de
https://www.science.org/doi/10.1126/science.adg2833
https://www.kofo.mpg.de/de/forschung/services/orca
Bismut ist das schwerste der stabilen Elemente im Periodensystem.
Florian Pircher
Florian Pircher/Pixabay
Criteria of this press release:
Journalists, Scientists and scholars
Chemistry, Environment / ecology, Materials sciences, Physics / astronomy
transregional, national
Cooperation agreements, Research results
German
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).