idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
05/26/2023 14:02

Fraktonen als Informationsspeicher: Noch nicht greifbar, aber nah

Dr. Antonia Rötger Kommunikation
Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

    Ein neues Quasiteilchen mit interessanten Eigenschaften ist aufgetaucht – vorerst allerdings nur in theoretischen Modellierungen von Festkörpern mit bestimmten magnetischen Eigenschaften. Anders als erwartet, bringen Quantenfluktuationen das Quasiteilchen jedoch nicht deutlicher zum Vorschein, sondern verschmieren seine Signatur, zeigt nun ein internationales Team am HZB und der Freien Universität Berlin.

    Anregungen in Festkörpern lassen sich mathematisch auch als Quasiteilchen abbilden, zum Beispiel können Gitterschwingungen, die mit der Temperatur zunehmen, gut als Phononen beschrieben werden. Rein mathematisch sind jedoch auch Quasiteilchen möglich, die bislang noch nie in einem Material beobachtet wurden. Wenn solche "theoretischen" Quasiteilchen interessante Talente besitzen, dann lohnt sich ein näherer Blick. Zum Beispiel auf die Fraktonen.

    Kandidaten für die Speicherung von Information

    Fraktonen sind Bruchteile von Spinanregungen und dürfen keine kinetische Energie besitzen. Das bedeutet: Sie sind vollkommen ortsfest. Damit sind Fraktonen neue Kandidaten für die perfekt sichere Informationsspeicherung. Zumal sie sich unter besonderen Bedingungen dann doch versetzen lassen, nämlich Huckepack auf einem weiteren Quasiteilchen. „Die Fraktonen sind aus einer mathematischen Erweiterung der Quantenelektrodynamik entstanden, in denen elektrische Felder nicht als Vektoren, sondern als Tensoren behandelt werden - ganz losgelöst von realen Materialien“, erklärt Prof. Dr. Johannes Reuther, theoretischer Physiker an der Freien Universität Berlin und am HZB.

    Einfache Modellsysteme

    Um Fraktonen in Zukunft auch experimentell beobachten zu können, ist es nötig, möglichst einfache Modellsysteme zu finden: Daher modellierte man zunächst oktaedrische Kristallstrukturen mit antiferromagnetisch wechselwirkenden Eckatomen. Dabei zeigten sich besondere Muster mit verschiedenen Knotenpunkten in den Spin-Korrelationen, die im Prinzip in einem realen Material auch experimentell mit Neutronenexperimenten nachweisbar sein müssten. „Die Spins wurden in bisherigen Arbeiten jedoch wie klassische Vektoren behandelt, ohne Berücksichtigung von Quantenfluktuationen“, sagt Reuther.

    Jetzt mit Quantenfluktuationen

    Deshalb hat nun Reuther zusammen mit Yasir Iqbal vom Indian Institute of Technology in Chennai, Indien und seinem Doktoranden Nils Niggemann erstmals Quantenfluktuationen in die Berechnung dieses oktaedrischen Festkörpersystems mit aufgenommen. Es handelt sich um sehr aufwändige numerische Berechnungen, die grundsätzlich in der Lage sind, Fraktonen abzubilden. „Das Ergebnis hat uns überrascht, denn tatsächlich sehen wir, dass Quantenfluktuationen die Fraktonen nicht deutlicher hervortreten lassen, sondern im Gegenteil, vollständig verwischen, sogar am absoluten Nullpunkt der Temperatur“, sagt Niggemann.

    Im nächsten Schritt wollen die drei theoretischen Physiker eine Modellierung entwickeln, in der sich Quantenfluktuationen hoch- oder runterregeln lassen. Eine Art Zwischenwelt zwischen der klassischen Festkörperphysik und den bisherigen Simulationen, in der sich die erweiterte quantenelektrodynamische Theorie mit ihren Fraktonen genauer untersuchen lässt.

    Von Theorie zum Experiment

    Noch ist kein Material bekannt, das Fraktonen zeigt. Aber wenn die nächsten Modellierungen genauere Hinweise geben, wie Kristallstruktur und magnetische Wechselwirkungen beschaffen sein müssten, dann könnten Teams aus der Experimentalphysik damit beginnen, solche Materialien zu entwerfen und durchzumessen. „In den nächsten Jahren wird es sicher noch keine Anwendung dieser Erkenntnisse geben, aber vielleicht in den kommenden Dekaden und dann wäre es der berühmte Quantensprung, mit wirklich neuen Eigenschaften“, sagt Reuther.

    Text: Antonia Rötger


    Contact for scientific information:

    Prof. Dr. Johannes Reuther, johannes.reuther@helmholtz-berlin.de


    Original publication:

    Physical Review Letters (2023):

    Quantum effects on unconventional pinch point singularities

    Nils Niggemann, Yasir Iqbal and Johannes Reuther
    DOI: 10.1103/PhysRevLett.130.196601

    https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.130.196601


    Images

    Criteria of this press release:
    Journalists, Scientists and scholars, Students
    Mathematics, Physics / astronomy
    transregional, national
    Research results
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).