idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
06/07/2023 12:24

How an earthquake becomes a tsunami

Andrea Mayer-Grenu Stabsstelle Hochschulkommunikation
Universität Stuttgart

    The movement between continental and oceanic plates at the bottom of the sea, so-called megathrust earthquakes, generates the strongest earth tremors and the most dangerous tsunamis. How and when they occur, however, has been poorly understood so far, since the ocean floor is difficult to access for measurements. Thanks to new technologies, an international research team, in which Prof. James Foster from the Institute of Geodesy at the University of Stuttgart was also involved, was able to take measurements to the nearest centimeter for the first time in an underwater-earthquake zone off Alaska. The researchers reported on their findings in the specialist journal “Science Advances”.

    The Chignik earthquake on July 28, 2021, occurred 32 km below the seafloor off the coast of Alaska and, with a magnitude of 8.2, was the seventh strongest earthquake in US history. It occurred because the oceanic Pacific Plate is sliding past the continental North American Plate, thereby causing an enormous thrust. In the sparsely populated region, the damage caused by the quake was limited. In general, however, such megathrust earthquakes have enormous destructive potential in the so-called subduction zone, i.e. the zone where oceanic and continental tectonic plates meet. In particular, tsunami waves can be generated. These are not very high at their place of origin, but hours later and many 100 or 1000 kilometers away, they can hit the coasts as a catastrophic tsunami and endanger many lives.

    Despite the scale of these natural hazards, the relevant physical processes involved in megathrust earthquakes are still understood only to a limited extent. It is therefore difficult to estimate the spatio-temporal evolution of coupled earthquake and tsunami hazards in subduction zones. To be able to better predict the likelihood of a quake triggering a tsunami, the research team headed by Benjamin Brooks from the United States Geological Survey examined the seafloor off Alaska shortly before and about 2.5 months after the Chignik quake, using a global navigation satellite system (GNSS), an acoustic positioning system, and a robotic ship.

    Autonomous wave gliders allow measurements to the nearest centimeter
    In the project, a key role was played by autonomous vessels that operate on the water surface. These so-called wave gliders, in the development of which Prof. James Foster from the Institute of Geodesy at the University of Stuttgart was also involved, are equipped with both GNSS and acoustic measuring devices. The modern technology allowed measurements of the movements in the subduction zones to the nearest centimeter and thus a precise picture of the complicated slip processes and faults. Particular attention was paid to the shallow portions of the slip zones, as these are critical to whether or not a tsunami will occur.

    The measurements were taken at a water depth of 1,000 to 2,000 meters. “It would be even better if we could take measurements at a water depth of 3,000 to 4,000 meters, directly above the shallowest part of the fault system,” says Foster.

    However, the geodetic systems currently used on the seafloor cannot be used at these depths. The tsunami researcher is all the more pleased that, thanks to funding by the German Research Foundation and in cooperation with the GEOMAR Helmholtz Center for Ocean Research in Kiel, he will soon be able to purchase a device whose sensors allow geodetic measurements at these depths. “With this system, we will be able to directly measure the movement of the seafloor in these deepest sections of tsunamigenic faults.”


    Contact for scientific information:

    Prof. James Foster, University of Stuttgart, Institute of Geodesy, phone: +49 711 685 83459, email james.foster@gis.uni-stuttgart.de


    Images

    A wave glider with GNSS and acoustic measuring devices for measurements on the seafloor.
    A wave glider with GNSS and acoustic measuring devices for measurements on the seafloor.

    Todd Ericksen

    James Foster is leading the wave glider mission.
    James Foster is leading the wave glider mission.

    Susanne Dorn


    Criteria of this press release:
    Journalists, Scientists and scholars
    Geosciences, Oceanology / climate
    transregional, national
    Research results, Scientific Publications
    English


     

    A wave glider with GNSS and acoustic measuring devices for measurements on the seafloor.


    For download

    x

    James Foster is leading the wave glider mission.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).