idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
07/11/2023 12:37

A better understanding of turbulence

Dr. Guido Schriever Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Dynamik und Selbstorganisation

    Experiments at the unique wind tunnel of the Max Planck Institute for Dynamics and Self-Organization (MPI-DS) in Göttingen show that laws formulated more than 80 years ago and their extensions only incompletely explain turbulent flows.

    Stirring a cup of coffee creates a turbulent flow with large and very small vortices. The vortices of different sizes influence each other by transferring energy from a larger vortex to a smaller one, down to the smallest vortex, which dissipates in the liquid due to friction. This concept was first described by mathematician Andrei Kolmogorov, who established general scaling laws for turbulent flows in 1941. Using these and further refinements, computer simulations for engineered flows, weather forecasts and climate models are still created from empirical data today.

    "We found that these scaling laws seem to apply only to strongly idealized flows," reports Christian Küchler, first author of the study. Previously, it had been assumed that they were universally valid. Even before that, measurements in wind tunnels at lower turbulence levels could not confirm the theoretical predictions, but they were usually attributed to the turbulence strength being too low. "In our unique channel, we can use gases at high pressures and thus achieve extremely high degrees of turbulence," says MPI-DS director Eberhard Bodenschatz, who designed the channel for his research.

    By selectively generating turbulence and using an active grid, developed at MPI-DS by coauthor Greg Bewley from Cornell University, the researchers were able to show that systematic deviations from Kolmogorov's predictions occur even in the strongest turbulence. This implies that medium-sized eddies in real flows are not completely decoupled from the very large eddies in a system by energy transfer, as has been suspected since 1941. Moreover, these new results are universal and do not depend on the strength of turbulence in the channel.

    "Our wind tunnel allows measurements that would otherwise not be possible," says Eberhard Bodenschatz, director at MPI-DS, explaining the special feature of the research facility. "We can better understand how turbulent flows really behave and develop new models on this basis," he continues. For instance, these experiments can contribute to a better understanding of turbulence in engineered flows or the atmosphere. There, the effect of turbulence is one of the largest uncertainty factors in modern climate models and weather forecasting.


    Contact for scientific information:

    Prof. Eberhard Bodenschatz (eberhard.bodenschatz@ds.mpg.de)


    Original publication:

    Christian Küchler, Gregory P. Bewley, and Eberhard Bodenschatz, "Universal velocity statistics in decaying turbulence", Phys. Rev. Lett. 131 (2023) 024001, DOI 10.1103/PhysRevLett.131.024001


    More information:

    https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.024001
    https://www.ds.mpg.de/4010565/230706_turbulence


    Images

    The wind tunnel at MPI-DS allows to generate very high degrees of turbulence at high pressure to measure different flows.
    The wind tunnel at MPI-DS allows to generate very high degrees of turbulence at high pressure to mea ...


    Criteria of this press release:
    Journalists, Scientists and scholars
    Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    English


     

    The wind tunnel at MPI-DS allows to generate very high degrees of turbulence at high pressure to measure different flows.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).