idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
07/25/2023 09:28

Abgekoppeltes Plasma: Technologie mit „riesigem Anwendungsfeld“

Team Pressestelle Presse-, Öffentlichkeitsarbeit und Marketing
FH Aachen

    Die Apparatur, die im Labor des Instituts für Mikrowellen- und Plasmatechnik (IMP) der FH Aachen steht, ist auf den ersten Blick unscheinbar; der Metallzylinder erinnert von Größe und Form her an eine Konservendose. Wenn Prof. Dr. Holger Heuermann das Gerät einschaltet, wird es im Inneren gleißend hell – so hell, dass man nur mit einer Schutzbrille mit abgedunkelten Gläsern durch die kreisrunde Scheibe schauen darf. „Wir haben erstmals ein abgekoppeltes Plasma erzeugt“, sagt der FH-Forscher, „damit steht uns ein riesiges Anwendungsfeld offen“.

    Ein Kennzeichen eines Plasmas ist die extrem hohe Energiedichte – in der Apparatur, die Prof. Heuermann mit seinem Team entwickelt hat, entsteht eine Temperatur von mehr als 5000 Grad Celsius. „Wir nutzen einen Wolframdraht zur Zündung“, erläutert der Wissenschaftler, „die Temperatur wird so hoch, dass das Material verdampft“. Ermöglicht wird das bei einer vergleichsweise geringen Energieeinspeisung – gerade einmal 80 Watt Leistung liegen an.
    Prof. Heuermann arbeitet seit knapp 20 Jahren an der Erzeugung von Plasmen durch die Nutzung von Mikrowellen, also Wellen im Frequenzbereich von etwa 2,5 Gigahertz (GHz). Zum Einsatz kommen diese Plasmen bei Zündkerzen, chirurgischen Geräten und Energiesparlampen sowie zur Reinigung von Oberflächen. Im Jahr 2019 zeichnete die FH Aachen Prof. Heuermann für seine Arbeit mit dem Forschungspreis der Hochschule aus. Bislang war die Erzeugung der Plasmen aber immer an die Strahlenquelle gebunden – durch die Abkopplung ergeben sich ganz neue Nutzungsszenarien. Ein weiterer Vorteil ist, dass die Form des Plasmas beeinflusst werden kann; je nach Nutzungszweck kann es eher strahlförmig oder flächig ausgelegt werden.
    „Das Interesse in Wissenschaft und Wirtschaft ist riesig“, sagt Prof. Heuermann, „wir können uns vor Anfragen kaum retten.“ Als nächster Schritt ist die Patentierung des Verfahrens geplant – aus diesem Grund kann an dieser Stelle über die technischen Details auch nicht viel gesagt werden. Nur so viel: „Wir haben intensiv an der Modellierung gearbeitet, und zwar mit Simulationen auf der Basis der Finite-Elemente-Methode.“ Zudem hat das IMP einzigartige Messplätze aufgebaut, um die Plasmen im GHz-Bereich zu charakterisieren. Parallel zur Patentierung steht die Weiterentwicklung an, das FH-Team ist optimistisch, mit Forschungspartnern auch erfolgreiche Anträge etwa bei der Deutschen Forschungsgemeinschaft (DFG) einreichen zu können.
    „Wir arbeiten eng mit Prof. Dr. Bernhard Unterberg vom Institut für Energie- und Klimaforschung des Forschungszentrums Jülich zusammen“, sagt Prof. Heuermann. Gemeinsam wollen die Forscher herausfinden, wie sich das abgekoppelte Plasma in der Fusionstechnik nutzen lässt. In diesen Anlagen kommen bislang sehr leistungsstarke Magnetfelder zum Einsatz, deren Bau und Betrieb höchst aufwendig ist. „Über unser abgekoppeltes Plasma können wir eine sehr hohe Energiedichte an einen beliebigen Punkt bringen“, betont Prof. Heuermann, mithin sei ein Einsatz in der Fusionstechnik denkbar. Der nächste Schritt wäre, eine Forschungsanlage herzustellen, die gerade mal so viel Energie produziert wie sie auch verbraucht.
    Die industrielle Nutzung des abgekoppelten Plasmas ist auch kurzfristig möglich, entsprechende Anfragen aus den Bereichen Beschichtung, Ofentechnik und Spektroskopie gibt es bereits. „Wir haben einen Antrag für eine Anlage erstellt, mit der Bremsscheiben mit Keramik beschichtet werden“, erläutert Prof. Heuermann. Ein großer deutscher Automobilkonzern ist als Partner im Boot. Gegenüber den bislang eingesetzten Systemen erhoffen sich die Fachleute weniger Feinstaub und einen geringeren Energieverbrauch, zudem sind die Plasmaanlagen langlebiger und viel wartungsärmer. Auf der Hand liegt auch eine Nutzung in Industrieöfen – schließlich lässt sich das Plasma und damit eine sehr hohe Energiedichte genau dort platzieren, wo es benötigt wird. „Die Energieeffizienz ist viel höher als bei Wasserstoffbrennern, da zum Beispiel kein Abgas mehr anfällt. Die Sicherheits- und Versorgungsprobleme von Gasbrennern entfallen“, sagt der FH-Forscher. Das IMP betreibt außerdem bereits jetzt eine Versuchsanlage, mit der spektrografische Untersuchungen durchgeführt werden können (Microwave Induced Breakdown Spectroscopy, MIBS). „Wir können unterschiedliche Stoffe auf ihre Zusammensetzung überprüfen“, sagt Prof. Heuermann, als Beispiel nennt er Sicherheitskontrollen am Flughafen, wo Flüssigkeiten im Reisegepäck von Fluggästen untersucht werden.

    Mit dem Begriff Plasma bezeichnet man in der Physik ein Gas, das teilweise oder vollständig aus freien Ladungsträgern, also Ionen oder Elektronen, besteht. 99 Prozent der sichtbaren Materie im Universum besteht aus Plasma. Mit steigender Temperatur gehen alle Stoffe nacheinander vom festen in den flüssigen und dann in den gasförmigen Zustand über. Wird die Temperatur noch weiter erhöht, entsteht ein Plasma. Ein Plasma nennt man deshalb auch den „vierten Aggregatszustand der Materie“: Die Atome des Gases trennen sich in ihre Bestandteile – Elektronen und Kerne – auf. Beispiele aus dem Alltag sind die Plasmasäule in einer Neonröhre, ein elektrischer Funke oder der Plasmafaden eines Blitzes. Ein Plasma hat ganz andere Eigenschaften als ein normales Gas. Zum Beispiel ist ein Plasma elektrisch leitend. Seine Bewegung lässt sich daher durch elektrische und magnetische Felder beeinflussen


    Images

    FH-Forscher Aljoscha Belda im Plasmalabor
    FH-Forscher Aljoscha Belda im Plasmalabor
    FH Aachen | Arnd Gottschalk

    Plasmaerzeugung im Labor des IMP
    Plasmaerzeugung im Labor des IMP
    FH Aachen | Arnd Gottschalk


    Criteria of this press release:
    Journalists, Scientists and scholars
    Electrical engineering, Energy
    transregional, national
    Research results, Transfer of Science or Research
    German


     

    FH-Forscher Aljoscha Belda im Plasmalabor


    For download

    x

    Plasmaerzeugung im Labor des IMP


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).