idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
07/27/2023 11:26

Looking deep into the Network

Romas Bielke Öffentlichkeitsarbeit
Georg-August-Universität Göttingen

    Artificial neural networks are everywhere in research and technology, as well as in everyday technologies such as speech recognition. Despite this, it is still unclear to researchers what is exactly going on deep down in these networks. To find out, researchers at the Göttingen Campus Institute for Dynamics of Biological Networks (CIDBN) at Göttingen University, and the Max Planck Institute for Dynamics and Self-Organisation (MPI-DS) have carried out an information-theoretic analysis of Deep Learning, a special form of machine learning.

    They realised that information is represented in a less complex way the more it is processed. Furthermore, they observed training effects: the more often a network is "trained" with certain data, the fewer “neurons” are needed to process the information at the same time. The results were published in Transactions on Machine Learning Research.

    Artificial neural networks of the Deep Neural Network type are composed of numerous layers, each consisting of artificial neurons. The networks are informed by the way the cerebral cortex works. They must first learn to recognise and then generalise patterns. To do this, they are trained with data. For their study, the researchers used images of handwritten numbers that the network was supposed to recognise correctly. The principle is simple: an image is read by the input layer. Then, one by one, the intermediate layers take in the contents of the image, distributing the information among the artificial neurons. Ideally, at the end, the output layer delivers the correct result.

    The researchers used a novel technique known as Partial Information Decomposition to determine how the input values are transformed in the intermediate layers. In this method, the information is broken down into its individual parts. This reveals how the artificial neurons divide up the processing: does each neuron specialise in individual aspects of the information? Is there a lot of redundancy or more synergy?

    "The further we move towards the output layer in the network, the fewer neurons the information is distributed across. The neurons become specialised. The representation of the information becomes less complex with processing and thus easier to read," explains David Ehrlich from CIDBN. Also, as training progresses, the number of neurons involved in coding the information decreases. Consequently, training contributes to a decrease in complexity during processing.

    "The most significant part of this new finding is that we now have insights into the information structure and functioning of each intermediate layer. So, we can watch the information processing in artificial neural networks layer by layer – and even during the learning process," says Andreas Schneider from MPI-DS. "This offers a new starting point for improving deep neural networks. These networks are used in critical areas such as driverless cars and face recognition so it is crucial to avoid errors. To do this, it is important to understand the inner workings of these networks in detail," the researchers conclude.


    Contact for scientific information:

    Dr Britta Korkowsky
    University of Göttingen
    Göttingen Campus Institut for Dynamics of Biological Networks (CIDBN)
    Heinrich Düker Weg 12, 37073 Göttingen, Germany
    Tel: +49 (0)551 39-26675
    Mail: cidbn@uni-goettingen.de

    Dr Manuel Maidorn
    Press Officer
    Max Planck Institute for Dynamics und Self-organization (MPI-DS)
    Am Faßberg 17, 37077 Göttingen, Germany
    Tel: +49 (0)551 5176-668
    Mail: presse@ds.mpg.de


    Original publication:

    Original publication: Ehrlich, D. A. et al: A Measure of the Complexity of Neural Representations based on Partial Information Decomposition. Transactions on Machine Learning Research (2023). Full text available here: https://openreview.net/pdf?id=R8TU3pfzFr


    More information:

    https://www.uni-goettingen.de/en/3240.html?id=7166 (with pictures for download)


    Images

    Criteria of this press release:
    Journalists
    Biology, Information technology
    transregional, national
    Research results
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).